Higher Order Spatial Operators for the Finite Integration Theory

Authors

  • Holger Spachmann Technische Universitat Darmstadt, FB 18, Theorie Elektromagnetischer Felder (TEMF), Schlossgartenstr. 8, D-64289 Darmstadt, Germany
  • Rolf Schuhmann Technische Universitat Darmstadt, FB 18, Theorie Elektromagnetischer Felder (TEMF), Schlossgartenstr. 8, D-64289 Darmstadt, Germany
  • Thomas Weiland Technische Universitat Darmstadt, FB 18, Theorie Elektromagnetischer Felder (TEMF), Schlossgartenstr. 8, D-64289 Darmstadt, Germany

Keywords:

Higher Order Spatial Operators for the Finite Integration Theory

Abstract

The Finite Integration Technique (FIT) according to T. Weiland is an efficient and universal method for solving a large scale of problems in computational electrodynamics. Up to now the conventional formulation itself has had an accuracy order of two with respect to the spatial discretization. In this paper an innovative extension to fourth or even higher order is presented. The convergence of the presented scheme is demonstrated by a general dispersion equation and stability issues are discussed. An approach for a stable spatial interface connecting regions of higher order with the standard FIT scheme is proposed.

Downloads

Download data is not yet available.

References

T. Weiland A Discretization Metho d for the Solution of

Maxwell's Equations for Six-Comp onent Fields", Electronics

and Communication (AE U), Vol. 31, p. 116-120, 1977

J. E. Castillo, J. M. Hyman, M. Shashkov, S. Steinb erg The

Sensitivity and Accuracy of Fourth Order Finite-Di erence

Schemes on Nonuniform Grids in One Dimension", Comput-

ers Math. Applic., Vol. 30, No. 8., pp. 41-55, 1995

M. F. Hadi A Mo di ed FDTD (2,4) Scheme for Mo deling

Electrically Large Structures with High Phase Accuracy",

Ph.D. Dissertation, ECEN Dept., University of Colorado,

Boulder, CO, 1996

N. V. Kantartzis, T. D. Tsib oukis A Generalized Metho dol-

ogy based on Higher-Order Conventional and Non-Standard

FDTD Concepts for the Systematic Development of Enhanced

Disp ersionless Wide-Angle Absorbing Perfectly Matched Lay-

ers ", International Journal of Numerical Mo deling, Vol. 13,

No. 5, pp. 417-440, 2000

I. Harari, E. Turkel Accurate Finite Di erence Metho ds for

Time-Harmonic Wave Propagation", Journal of Computa-

tional Physics, No. 119, pp. 253-270, 1995

N. Homsup A Comparision b etween a Spline-Based Metho d

and a High-Order FDTD Scheme for the Maxwell Equations",

Pro c. of Computational Electromagnetics and its Applica-

tions (ICCEA), Bejing, China, Nov. 1.-4., pp. 56-59, 1999

J. Fang Time Domain Finite Di erence Computation for

Maxwell's Equations", PhD. dissertation, EECS Dept.,Univ.

California, Berkeley, CA, 1989

J. L. Young, D. Gaitonde, J. J. S. Shang Toward the Con-

struction of a Fourth-Order Di erence Scheme for Transient

EM Wave Simulation: Staggered Grid App orach", IEEE

Transactions on Antennas and Propagation, Vol. 45, No. 9,

pp. 1573-1581, 1997

J. L. Young A Higher Order FDTD Metho d for EM Prop-

agation in a Collisionless Cold Plasma", IEEE Transactions

on Antennas and Propagation, Vol. 44, No. 9, pp. 1283-1289,

E. Turkel, A. Yefet Fourth Order Accurate Com-

pact Implicit Metho d for the Maxwell Equation",

http://www.math.tau.ac.il/turkel/

K. P. Hwang, A. C. Cangellaris Numerical Boundary Condi-

tions at Material Interfaces for High-Order FDTD Schemes",

Pro ceedings of 17'th ACES Conference, Monterey, USA, pp

-15, 2001

Z. Xie, B. Zhang, C. H. Chan A Fourth-Order Accurate Stag-

gered FD-TD scheme for the Maxwell Equations", Pro c. of

IEEE Antennas and Propagation So ciety (AP-S), Salt Lake

City, USA, pp. 1518-1521, July. 16.-21. 2000

M. Krumpholz, L. P. B. Katehi MRTD: New Time-Domain

Schemes Based on Multiresolution Analysis", IEEE Transac-

tions on Microwave Theory and Techniques, Vol. 44, No. 4.,

pp. 555-571, 1996

M. Clemens, R. Schuhmann, T. Weiland Algebraic Prop er-

ties and Conservation Laws in the Discrete Electromagnetism

", Frequenz, No. 53, pp. 219-225, 1999

T. Weiland Time Domain Electromagnetic Field Computa-

tion With Finite Di erence Metho ds", International Journal

of Numerical Mo deling, Vol. 9, pp. 295-319, 1996

T. Weiland On the Unique Numerical Solution of Maxwellian

Eigenvalue Problems in three Dimensions", Particle Acceler-

ators, Vol. 17, pp. 227-242, 1985

G. Mur Absorbing Boundary Conditions for the Finite-

Di erence Approximation of the Time-Domain Electromag-

netic Field Equations", IEEE Trans. Electromagn. Compat.,

Vol. EMC-23, pp 377-382, Nov. 1981

J. R. Berenger A Perfectly Matched Layer for the Absorption

of Electromagnetic Waves", J. Computat. Phys., Vol. 114, pp.

-200, Oct. 1994

P. Thoma, T. Weiland Numerical Stability of Finite Di er-

ence Time Domain Metho ds", IEEE Transactions on Magnet-

ics, Vol. 34, No. 5, Septemb er 1998

R. Schuhmann, T. Weiland FDTD on Nonorthogonal Grids

with Triangular Fillings", IEEE Transactions on Magnetics,

Vol. 35, No. 3, pp. 1470-1473, May 1999

P. Thoma, T. Weiland A Consistent Subgridding Scheme for

the Finite Di erence Time Domain Metho d", International

Journal of Numerical Mo delling, Vol. 9, pp. 359-374, 1996

S. Gutschling, H. Kr uger, T. Weiland Time Domain Simu-

lation of Disp ersive Media with the Finite Integration Tech-

nique", International Journal of Numerical Mo delling, Vol.

, No. 4, pp. 329-348, 2000

T. Weiland, H. Kr uger, H. Spachmann FIT-Formulation for

Gyrotropic Media", Internat. Conference on Electromagnetics

in Advanced Applications (ICEAA '99), Sept. 13-17, Torino,

Italy, pp. 737-740, 1999

H. Spachmann, S. Gutschling, H. Kr uger, T. Weiland FIT-

Formulation for Nonlinear Disp ersive Media", International

Journal of Numerical Mo delling, Sp ecial Issue, Vol. 12, No.

/2, pp. 81-92, 1999

H. Spachmann, R. Schuhmann, T. Weiland Convergence,

Stability and Disp ersion Analysis of Higher Order Leap-

Frog Schemes for Maxwell's Equations", Pro ceedings of 17'th

ACES Conference, Monterey, USA, pp 655-662, 2001

Downloads

Published

2022-07-09

How to Cite

[1]
H. . Spachmann, R. . Schuhmann, and T. . Weiland, “Higher Order Spatial Operators for the Finite Integration Theory”, ACES Journal, vol. 17, no. 1, pp. 11–22, Jul. 2022.

Issue

Section

General Submission