A Circularly Polarized Patch Antenna Array with Reduced Mutual Coupling Using the Aperture-Loading Decoupling Technique
DOI:
https://doi.org/10.13052/2022.ACES.J.371209Keywords:
Circular polarization, mutual coupling reduction, decoupling aperture, array antennaAbstract
An aperture-loaded decoupling strategy for 1 × 8 circularly polarized (CP) patch antenna array is presented in this article. By introducing an additional coupling path, the mutual coupling between adjacent antennas is cancelled. The result shows that more than 20-dB isolation enhancement is obtained by applying this strategy at the center frequency of 3.38 GHz. Mutual coupling between both adjacent and non-adjacent elements are suppressed to less than -25 dB. Moreover, the impedance bandwidth and axial ratio (AR) is also improved with decoupling. Compared with conventional CP antenna decoupling methods, the proposed approach has the characteristics of low profile, compact size, and low impact for the ground plane. It is shown that the AR bandwidth can be enhanced using the proposed decoupling method.
Downloads
References
A. Zaidi, F. Athley, J. Medbo, U. Gustavsson, and G. Durisi, 5G Physical Layer: Principles, Models and Technology Components, Academic Press, London, U.K., 2018.
H. Pei, X. Chen, X. Huang, X. Liu, X. Zhang, and Y. Huang, “Key issues and algorithms of multiple-input-multiple-output over-the-air testing in the multi-probe anechoic chamber setup,” Sci. China: Inf. Sci., vol. 65, no. 3, 131302, Mar.2022.
X. Chen, S. Zhang, and Q. Li, “A review of mutual coupling in MIMO systems,” IEEE Access, vol. 6, pp. 24706-24719, Apr. 2018.
J. W. Wallace and M. A. Jensen, “Mutual coupling in MIMO wireless systems: A rigorous network theory analysis,” IEEE Trans. Wireless Commun., vol. 3, no. 4, pp. 1317-1325, Jul. 2004.
Y. Da, X. Chen, and A. A. Kishk, “In-band mutual coupling suppression in dual-band shared-aperture base station arrays using dielectric block loading,” IEEE Trans. Antenna Propag., vol. 70, no. 10, pp. 9270-9281, Oct. 2022.
K. Qian, L. Zhao, and K. Wu, “An LTCC coupled resonator decoupling network for two antennas,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 10, pp. 3199-3207, Oct. 2015.
H. Meng and K. Wu, “An LC decoupling network for two antennas working at low frequencies,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 7, pp. 2321-2329, Jul. 2017.
Y. Cheng and K. M. Cheng, “A novel dual-band decoupling and matching technique for asymmetric antenna arrays,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 5, pp. 2080-2089, May 2018.
B. Qian, X. Chen, and A. A. Kishk, “Decoupling of microstrip antennas with defected ground structure using the common/differential mode theory,” IEEE Antennas Wireless Propag. Lett., vol. 20, no. 5, pp. 828-832, May 2021.
Y. Zhang, S. Zhang, J. Li, and G. F. Pedersen, “A transmission-line-based decoupling method for MIMO antenna arrays,” IEEE Trans. Antennas Propag., vol. 67, no. 5, pp. 3117-3131, May 2019.
M. Li, X. Chen, A. Zhang, W. Fan, and A. A. Kishk, “Split-ring resonator-loaded baffles for decoupling of dual-polarized base station array,” IEEE Antennas Wireless Propag. Lett., vol. 19, no. 10, pp. 1828-1832, Oct. 2020.
K. Wu, C. Wei, X. Mei, and Z. Zhang, “Array-antenna decoupling surface,” IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6728-6738, Dec. 2017.
C. Fager, X. Bland, K. Hausmair, J. C. Cahuana, and T. Eriksson, “Prediction of smart antenna transmitter characteristics using a new behavioral modeling approach,” IEEE MTT-S Int. Microw. Symp. Dig., Tampa, FL, USA, pp. 1-4, Jun. 2014.
F. Peng, F. Yang, B. Liu, and X. Chen, “Experimental investigation of decoupling effect on the nonlinearity of power amplifiers in transmitter array,” Applied Computational Electromagnetics Society (ACES) Journal, in press.
B. Wang, Y. Chang, and Y. Sun, “Performance of the large-scale adaptive array antennas in the presence of mutual coupling,” IEEE Trans. Antennas Propag., vol. 64, no. 6, pp. 2236-2245, Jun. 2016.
Y. Da, Z. Zhang, X. Chen, and A. A. Kishk, “Mutual coupling reduction with dielectric superstrate for base station arrays,” IEEE Antennas Wireless Propag. Lett., vol. 20, no. 5, pp. 843-847, May 2021.
Y. Zhang, S. Zhang, J. Li, and G. F. Pedersen, “A wavetrap-based decoupling technique for 45∘
polarized MIMO antenna arrays,” IEEE Trans. Antennas Propag., vol. 68, no. 3, pp. 2148-2157, Mar. 2020.
S. Song, Y. Da, B. Qian, X. Huang, X. Chen, Y. Li, and A. A. Kishk, “Dielectric resonator magnetoelectric dipole arrays with low cross polarization, backward radiation, and mutual coupling for MIMO base station applications,” China Communications, in press.
P. Mei, Y. Zhang, and S. Zhang, “Decoupling of a wideband dual-polarized large-scale antenna array with dielectric stubs,” IEEE Trans. Veh. Technol., vol. 70, no. 8, pp. 7363-7374, Aug. 2021.
C. Chiu, C. Cheng, R. D. Murch, and C. R. Rowell, “Reduction of mutual coupling between closely-packed antenna elements,” IEEE Trans. Antennas Propag., vol. 55, no. 6, pp. 1732-1738, Jun. 2007.
Y. Zhang, S. Shen, Z. Han, C. Chiu, and R. Murch, “Compact MIMO systems utilizing a pixelated surface: capacity maximization,” IEEE Trans. Veh. Technol. vol. 70, no. 9, pp. 8453-8466, Sep. 2021.
F. Yang and Y. Rahmat-Samii, “Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications,” IEEE Trans. Antennas Propag., vol. 51, no. 10, pp. 2936-2946, Oct. 2003.
K. Yu, Y. Li, and X. Liu, “Mutual coupling reduction of a MIMO antenna array using 3-D novel meta-material structures,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 33, no. 7, pp. 758-763, Mar. 2018.
A. Diallo, C. Luxey, P. L. Thuc, R. Staraj, and G. Kossiavas, “Study and reduction of the mutual coupling between two mobile phone pifas operating in the DCS1800 and UMTS bands,” IEEE Trans. Antennas Propag., vol. 54, no. 11, pp. 3063-3074, Nov. 2006.
S. Luo, Y. Li, Y. Xia, and L. Zhang, “A low mutual coupling antenna array with gain enhancement using metamaterial loading and neutralization line structure,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 34, no. 3, pp. 411-418, Mar. 2019.
W. Shi, X. Liu, and Y. Li, “ULA fitting for MIMO radar,” IEEE Commun Lett., vol. 26, no. 9, pp. 2190-2194, Sep. 2022.
C. Wu, C. Chiu, and T. Ma, “Very compact fully lumped decoupling network for a coupled two-element array,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 158-161, 2016.
R. Xia, S. Qu, P. Li, D. Yang, S. Yang, and Z. Nie, “Wide-angle scanning phased array using an efficient decoupling network,” IEEE Trans. Antennas Propag., vol. 63, no. 11, pp. 5161-5165, Nov.2015.
X. Zou, G. Wang, Y. Wang, and H. Li, “An efficient decoupling network between feeding points for multielement linear arrays,” IEEE Trans. Antennas Propag., vol. 67, no. 5, pp. 3101-3108, May 2019.
Y. Zhang, Q. Ye, G. F. Pedersen, and S. Zhang, “A simple decoupling network with filtering response for patch antenna arrays,” IEEE Trans. Antennas Propag., vol. 69, no. 11, pp. 7427-7439, Nov. 2021.
Y.-M. Zhang and S. Zhang, “A novel aperture-loaded decoupling concept for patch antenna arrays” IEEE Trans. Microw. Theory Techn., vol. 69, no. 9, Sep. 2021.
C. Mao, S. Gao, Y. Wang, and J. T. S. Sumantyo, “Compact broadband dual-sense circularly polarized microstrip antenna/array with enhanced isolation,” IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 7073-7082, Dec. 2017.
B. Liu, X. Chen, J. Tang, A. Zhang, and A. A. Kishk, “Co- and cross-polarization decoupling structure with polarization rotation property between linearly polarized dipole antennas with application to decoupling of circularly polarized antennas,” IEEE Trans. Antennas Propag., vol. 70, no. 1, pp. 702-707, Jan. 2022.
D. Gao, Z. Cao, S. Fu, X. Quan, and P. Chen, “A novel slot-array defected ground structure for decoupling microstrip antenna array,” IEEE Trans. Antennas Propag., vol. 68, no. 10, pp. 7027-7038, Oct. 2020.