Wideband Cup Dielectric Resonator Antenna With Stable Omnidirectional Patterns
DOI:
https://doi.org/10.13052/2024.ACES.J.391009Keywords:
Dielectric resonator antenna (DRA), omnidirectional, widebandAbstract
A wideband omnidirectional cup dielectric resonator antenna (CDRA) is designed by utilizing three modes (DR TM01δ, coil, and monopole modes) for the first time. It deploys the modified coil feeding structure comprising four coil segments and two close-by probes. The four coil segments provide an equivalent magnetic-current loop and the two probes act as an electric monopole. Thus, the modified feeding structure can excite the DR TM01δ mode and two neighbor resonances extending the operating bandwidth. All of these modes have omnidirectional characteristics. To verify the idea, a CDRA is designed, fabricated, and measured. The CDRA is 0.61λ0×0.32λ0 (where λ0 is the free-space wavelength at the center frequency) with a bandwidth of 67.7% (3.28-6.64 GHz). The antenna has stable omnidirectional radiation patterns, high radiation efficiencies, and a low cross-polarized level within the operating bandwidth.
Downloads
References
K. W. Leung, E. H. Lim, and X. S. Fang, “Dielectric resonator antennas: From the basic to the aesthetic,” Proc. IEEE, vol. 100, no. 7, pp. 2181-2193, July 2012.
K. W. Leung, Y. M. Pan, X. S. Fang, E. H. Lim, K.-M. Luk, and H. P. Chan, “Dual-function radiating glass for antennas and light covers Part I: Omnidirectional glass dielectric resonator antennas,” IEEE Trans. Antennas Propag., vol. 61, no. 2, pp. 578-586, Feb. 2013.
N. Yang and K. W. Leung, “Size reduction of omnidirectional cylindrical dielectric resonator antenna using a magnetic aperture source,” IEEE Trans. Antennas Propag., vol. 68, no. 4, pp. 3248-3253, Apr. 2020.
M. Zou and J. Pan, “Investigation of resonant modes in wideband hybrid omnidirectional rectangular dielectric resonator antenna,” IEEE Trans. Antennas Propag., vol. 63, no. 7, pp. 3272-3275, July 2015.
C. A. Balanis, Antenna Theory: Analysis and Design, Hoboken, NJ: Wiley, 2005.
J. Huang, “Circularly polarized conical patterns from circular microstrip antennas,” IEEE Trans. Antennas Propag., vol. 32, no. 9, pp. 991-994, Sep. 1984.
D. M. Kokotoff, R. B. Waterhouse, and J. T. Aberle, “An annular ring coupled to a shorted patch,” IEEE Trans. Antennas Propag., vol. 45, no. 5, pp. 913-914, May 1997.
H.-T. Chen, H.-D. Chen, and Y.-T. Cheng, “Full-wave analysis of the annular-ring loaded spherical-circular microstrip antenna,” IEEE Trans. Antennas Propag., vol. 45, no. 11, pp. 1581-1583, Nov. 1997.
Y. Yu, J. Xiong, and H. Li, “Compact omni-directional circularly polarized antenna utilising bended dipoles and integrated baluns,” IET Microw. Antennas Propag., vol. 11, no. 10, pp. 1409-1414, July 2017.
C. M. Wu, J. H. Choi, H. Lee, and T. Itoh, “Magnetic-current-loop-induced electric dipole antenna based on substrate integrated waveguide cavity,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 519-522, Mar. 2014.
A. Al-Zoubi, F. Yang, and A. Kishk, “A low-profile dual-band surface wave antenna with a monopole-like pattern,” IEEE Trans. Antennas Propag., vol. 55, no. 12, pp. 3404-3412, Dec. 2007.
Y. Duan, M.-C. Tang, Z. Wu, Z. Zhang, D. Yi, and M. Li, “Omnidirectional-radiating, vertically polarized, wideband, electrically small filtenna,” IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 70, no. 4, pp. 1380-1384, Apr. 2023.
Y. Feng, L.-K. Zhang, J.-Y. Li, Y.-H. Yang, S.-G. Zhou, and X.-J. Yu, “A compact share-aperture antenna with pattern/polarization diversity for 5G sub-6G applications,” IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 70, no. 3, pp. 954-958, Mar. 2023.
D. D. Patil, K. S. Subramanian, and N. C. Pradhan, “3D-printed dual-band rectenna system for green IoT application,” IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 70, no. 8, pp. 2864-2868, Aug. 2023.
Y. M. Pan and K. W. Leung, “Wideband omnidirectional circularly polarized dielectric resonator antenna with parasitic strips,” IEEE Trans. Antennas Propag., vol. 60, no. 6, pp. 2992-2997, June 2012.
C. Wang, Z. Han, H. Liu, P. Wen, L. Wang, and X. Zhang, “A novel single-feed filtering dielectric resonator antenna using slotline stepped-impedance resonator,” IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 68, no. 11, pp. 3426-3430, Nov. 2021.
D. Guha, B. Gupta, C. Kumar, and Y. M. M. Antar, “Segmented hemispherical DRA: New geometry characterized and investigated in multi-element composite forms for wideband antenna applications,” IEEE Trans. Antennas Propag., vol. 60, no. 3, pp. 1605-1610, Mar. 2012.
S. H. Ong, A. A. Kishk, and A. W. Glisson, “Rod-ring dielectric resonator antenna,” Int. J. Rf. Microw. C. E., vol. 14, no. 5, pp. 441-446, Sep. 2004.
S. Zheng, Z.-Y. Zhang, X. Chen, and A. A. Kishk, “Wideband monopole-like cup dielectric resonator antenna with coil feeding structure,” IEEE Trans. Antennas Propag., vol. 70, no. 8, pp. 7118-7123, Aug. 2022.
N. Yang, K. W. Leung, K. Lu, and N. Wu, “Omnidirectional circularly polarized dielectric resonator antenna with logarithmic spiral slots in the ground,” IEEE Trans. Antennas Propag., vol. 65, no. 2, pp. 839-844, Feb. 2017.
M. H. Seko and F. S. Correra, “Excitation of dielectric resonator antennas by loop coupling,” IEEE Antennas Wireless Propag. Lett., vol. 18, no. 4, pp. 656-658, Apr. 2019.
W. Li, K. W. Leung, and N. Yang, “Omnidirectional dielectric resonator antenna with a planar feed for circular polarization diversity design,” IEEE Trans. Antennas Propag., vol. 66, no. 3, pp. 1189-1197, Mar. 2018.
W. W. Li and K. W. Leung, “Omnidirectional circularly polarized dielectric resonator antenna with top-loaded Alford loop for pattern diversity design,” IEEE Trans. Antennas Propag., vol. 61, no. 8, pp. 4246-4256, Aug. 2013.
Z.-X. Xia, K. W. Leung, and K. Lu, “3-D-printed wideband multi-ring dielectric resonator antenna,” IEEE Antennas Wireless Propag. Lett., vol. 18, no. 10, pp. 2110-2114, Oct. 2019.
H. Tang, L. Wu, D. Ma, H. Li, J. Huang, X. Deng, J. Zhou, and J. Shi, “Wideband filtering omnidirectional substrate-integrated dielectric resonator antenna covering Ku band,” IEEE Antennas Wireless Propag. Lett., vol. 22, no. 7, pp. 1746-1750, July 2023.
X. S. Fang, L. P. Weng, and Z. Fan, “Design of the wideband and low-height omnidirectional cylindrical dielectric resonator antenna using arced-apertures feeding,” IEEE Access, vol. 11, pp. 20128-20135, 2023.
M. Lapierre, Y. M. M. Antar, A. Ittipiboon, and A. Petosa, “Ultra-wideband monopole/dielectric resonator antenna,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 1, pp. 7-9, Jan. 2005.
K. S. Ryu and A. A. Kishk, “UWB dielectric resonator antenna having consistent omnidirectional pattern and low cross-polarization characteristics,” IEEE Trans. Antennas Propag., vol. 59, no. 4, pp. 1403-1408, Apr. 2011.
D. Guha, B. Gupta, and Y. Antar, “Hybrid monopole-DRAs using hemispherical/conical-shaped dielectric ring resonators: Improved ultrawideband designs,” IEEE Trans. Antennas Propag., vol. 60, no. 1, pp. 393-398, Jan. 2012.
C. Ozzaim, F. Ustuner, and N. Tarim, “Stacked conical ring dielectric resonator antenna excited by a monopole for improved ultrawide bandwidth,” IEEE Trans. Antennas Propag., vol. 61, no. 3, pp. 1435-1438, Mar. 2013.