An Ultra-wideband Metamaterial Absorber with Angular Stability
DOI:
https://doi.org/10.13052/2024.ACES.J.390802Keywords:
Angular stability, metamaterial, absorber, polarizations, ultrawidebandAbstract
In this paper, an ultra-wideband (UWB) microwave absorber with robust angular stability is proposed. Each unit of the structure consists of three-layer stacked resistive films to effectively broaden the absorption bandwidth. A metallic via is inserted in the center of the structure, which effectively guides the TM polarization oblique incident wave power to propagate vertically and be absorbed by the resistive films, thus enhancing the angular stability of TM polarization. Within the frequency range of 3.2 GHz to 35.5 GHz, the absorptivity surpasses 90% and the fractional bandwidth reaches 167%. Within an incident angle range of 0∘ to 60∘, the absorptivity of TE polarization remains at about 80%, and the TM polarization can be maintained at over 90%. The absorption mechanism was analyzed by surface power loss and surface current distribution. A sample was fabricated, and the measured results are consistent with the simulated ones. The absorber displays good angular stability and broad bandwidth, making it ideal for electromagnetic stealth applications.
Downloads
References
V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ
,” Sov. Phys. Usp, vol. 10, pp. 509-514, Jan. 1968.
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, no. 18, pp. 4184-4187, May 2000.
D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E, vol. 71, no. 3, Art. no. 036617, 2005.
D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B, Condens. Matter, vol. 65, no. 19, Art. no. 195104,Apr. 2002.
C. Liang, X. Kong, F. Wang, R. Xu, Y. Fu, X. Pang, S. Zhang, X. Shen, and L. Zhao, “A broadband perfect metamaterial absorber with angle-insensitive characteristics,” J. Electromagn. Wave Appl., vol. 37, no. 3, pp. 401-410, Mar. 2023.
P. Chen, X. Kong, J. Han, W. Wang, K. Han, H. Ma, L. Zhao, and X. Shen, “Wide-angle ultra-broadband metamaterial absorber with polarization insensitive characteristics,” Chinese Phys. Lett., vol. 38, no. 2, p. 27801, Jan. 2021.
R. Araneo and S. Celozzi, “Optimal design of electromagnetic absorbers,” Applied Computational Electromagnetic Society (ACES) Journal, vol. 29, no. 4, pp. 316-327, Apr. 2014.
P. Zhou, Q. Huang, L. Ji, and X. Shi, “Design of a thin broadband metamaterial absorber based on resistance frequency selective surface,” Applied Computational Electromagnetic Society (ACES) Journal, vol. 34, no. 10, pp. 1494-1499,Oct. 2019.
Lim and S. Lim, “Ultrawideband electromagnetic absorber using sandwiched broadband metasurfaces,” IEEE Antennas Wireless Propag. Lett., vol. 18, pp. 1887-1891, 2019.
X. Lu, J. Chen, Y. Huang, Z. Wu, and A. Zhang, “Design of ultra-wideband and transparent absorber based on resistive films,” Applied Computational Electromagnetic Society (ACES) Journal, vol. 34, no. 05, pp. 765-770, May 2019.
D. Wang, K. Xu, S. Luo, Y. Cui, L. Zhang, and J. Cui, “A high Q-factor dual-band terahertz metamaterial absorber and its sensing characteristics,” Nanoscale., vol. 15, no. 7, pp. 3398-3407, Feb. 2023.
M. B. Ghandehari, N. Feiz, and M. Alipoor, “Circuit model analysis of a polarization and wide angle independent hexagonal shaped metamaterial absorber,” Applied Computational Electromagnetic Society (ACES) Journal, vol. 30, no. 8, pp. 909-914, Aug. 2015.
F. Dincer, M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, “Multi-band metamaterial absorber: design, experiment and physical interpretation,” Applied Computational Electromagnetic Society (ACES) Journal, vol. 29, no. 3, pp. 197-202,Mar. 2014.
T. Deng, Z. W. Li, and Z. N. Chen, “Ultrathin broadband absorber using frequency-selective surface and frequency-dispersive magnetic materials,” IEEE Trans. Antennas Propag., vol. 65, no. 11, pp. 5886-5894, Nov. 2017.
H. Xiong, J. S. Hong, C.-M. Luo, and L. L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys., vol. 114, no. 6, Art. no. 064109, Aug. 2013.
J. Yu, W. Jiang, and S. Gong, “Wideband angular stable absorber based on spoof surface plasmon polariton for RCS reduction,” IEEE Antennas Wireless Propag. Lett., vol. 19, no. 7, pp. 1058-1062, July 2020.
Z. C. Lin, Y. Zhang, L. Li, Y. T. Zhao, J. Chen, and K. D. Xu, “Extremely wideband metamaterial absorber using spatial lossy transmission lines and resistively loaded high impedance surface,” IEEE Trans. Microwave Theory Tech., vol. 71, no. 8, pp. 3323-3332, Aug. 2023.
B. Zhang and K.-D. Xu, “Dynamically switchable terahertz absorber based on a hybrid metamaterial with vanadium dioxide and graphene,” J. Opt. Soc. Amer. B Opt. Phys., vol. 38, no. 11, pp. 3425, Nov. 2021.
F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultrathin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antennas Propag., vol. 58, no. 5, pp. 1551-1558, May 2010.
F. Costa, A. Monorchio, and G. Manara, “An equivalent circuit model of frequency selective surfaces embedded within dielectric layers,” Proc. IEEE Antennas Propag. Soc. Int. Symp., pp. 1-4,2009.
Q. Zhou, X. W. Yin, F. Ye, R. Mo, Z. M. Tang, L. F. Cheng, and L. T. Zhang, “Optically transparent and flexible broadband microwave metamaterial absorber with sandwich structure,” Appl. Phys. A, vol. 125, no. 2, Art. no. 131, 2019.
L. Sun, H. Cheng, Y. Zhou, and J. Wang, “Broadband metamaterial absorber based on coupling resistive frequency selective surface,” Opt. Exp., vol. 20, no. 4, pp. 4675-4680, Feb. 2012.
R. E. Diaz, J. T. Aberle, and W. E. McKinzie, “TM mode analysis of a Sievenpiper high-impedance reactive surface,” in Proc. IEEE Antennas Propag. Symp., pp. 327-330, 2000.
C. R. Simovski, S. A. Tretyakov, and P. de Maagt, “Artificial high impedance-surfaces: Analytical theory for oblique incidence,” Proc. Antennas Propag. Soc. Int. Symp., vol. 4, pp. 434-437, 2003.
S. I. Maslovski, S. A. Tretyakov, and P. A. Belov, “Wire media with negative effective permittivity: A quasistatic model,” Microw. Opt. Technol. Lett., vol. 35, no. 1, pp. 47-51, Oct. 2002.
J. F. Chen, Z. Y. Hu, G. D. Wang, X. T. Huang, S. M. Wang, X. W. Hu, and M. H. Liu, “High-impedance surface-based broadband absorbers with interference theory,” IEEE Trans. Antennas Propag., vol. 63, no. 10, pp. 4367-4374, Oct. 2015.
J. F. Wei, Y. He, S.W. Bie, S. Wu, Z. P. Lei, W. Deng, Y. T. Liu, Y. L. Zhang, C. L. Li, J. Q. Ai, and J. J. Jiang, “Flexible design and realization of wideband microwave absorber with double-layered resistor loaded FSS,” J. Phys. D, Appl. Phys., vol. 52, no. 18, Art. no. 185101, May 2019.
Y. Chang and Yung L. Chow, “Broadband microwave absorber based on end-loading folded-dipole array,” Applied Computational Electromagnetic Society (ACES) Journal, vol. 34, no. 9, pp. 1327-1333, Sep. 2019.