A Focused Metasurface Lens Antenna with Gain Enhancement
DOI:
https://doi.org/10.13052/2024.ACES.J.391003Keywords:
metasurface, split resonant ring, widebandAbstract
A specialized metasurface has been developed for lens antenna applications. This innovative metasurface unit cell comprises five metallic layers and four dielectric layers. Each metallic layer consists of a pair of back-to-back split resonant rings. The proposed unit cell is highly effective with a transmission phase coverage exceeding 360∘ and a transmission amplitude larger than 70% at X-band (8.8-11.2 GHz). The unit cell has been thoroughly designed, fabricated and tested. To verify the present unit cell, a metasurface array with 27×27 elements is designed. An X-band horn antenna is used as the feed source. Simulation and measurement results show that the electromagnetic wave from the feed horn is focused within the operating band, resulting in a measured gain of 16.9 dB at 9 GHz and 19.2 dB at 11 GHz. Thus, a gain enhancement of 5.4 dB at 9 GHz and 5.7 dB at 11 GHz are obtained, making it a good reference for engineering applications.
Downloads
References
B. Rana, I.-G. Lee, and I.-P. Hong, “A 4×
digitally reconfigurable transmitarray: measurement of radiation patterns,” IEICE Electron. Express, vol. 19, 20210550, 2022.
Y. Zhang, Z. Han, X. Lv, K. Yan, Z. Weng, and Z. Wu, “Novel one-bit digital coding broadband transmits array antenna,” IEICE Electron. Express, vol. 17, 20200195, 2022.
S. Yu, L. Li, and N. Kou, “One-bit digital coding broadband reflectarray based on fuzzy phase control,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 1524-1527, 2017.
C. D. Giovampaola and N. Engheta, “Digital metamaterials,” Nat. Mater., vol. 13, pp. 1115-1121, 2014.
T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl., vol. 3, e218, 2014.
M. A. Al-Jocularly and N. Behdad, “Wideband planar microwave lenses using sub-wavelength spatial phase shifters,” IEEE Trans. Antennas Propag., vol. 59, no. 12, pp. 4542-4552, 2011.
T.-B. Nguyen, N. Kinai, N. Michishita, H. Morishita, T. Miyazaki, and M. Tadokoro, “Dual-polarized metasurface using multi-layer ceramic capacitors for radar cross section reduction,” IEICE Transactions on Communications, vol. E103.B, no. 8, pp. 852-859, 2020.
G. Zhao, T. Liu, J. Jiang, L. Zhao, G.-L. Huang, and W. Lin, “Polarization selective partial reflective decoupling layers for mutual coupling reduction of two closely spaced dual-polarized antennas,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 11, pp. 11205-11210,2022.
W. Yang, S. Chen, Q. Xue, W. Che, G. Shen, and W. Feng, “Novel filtering method based on metasurface antenna and its application for wideband high-gain filtering antenna with low profile,” IEEE Trans. Antennas Propag., vol. 67, no. 3, pp. 1535-1544, 2019.
Y. M. Pan, P. F. Hu, X. Y. Zhang, and S. Y. Zheng, “A low-profile high-gain and wideband filtering antenna with metasurface,” IEEE Trans. Antennas Propag., vol. 64, no. 5, pp. 2010-2016, 2016.
J.-J. Liang, G.-L. Huang, J.-N. Zhao, Z.-J. Gao, and T. Yuan, “Wideband phase gradient metasurface antenna with focused beams,” IEEE Access, vol. 7, pp. 206767-206772, 2019.
X. Zhong, H.-X. Xu, L. Chen, W. Li, H. Wang, and X. Shi, “An FSS-backed broadband phase-shifting surface array with multimode operation,” IEEE Trans. Antennas Propag., vol. 67, no. 9, pp. 5974-5981, 2019.
C. Tian, Y.-Q. Lu, G. Zhao, Y.-C. Jiao, and L.-X. Guo, “Double-layer transmitarray antenna using specially designed substrate,” IEEE Antennas Wireless Propag. Lett., vol. 21, no. 3, pp. 441-445, 2022.
C. G. M. Ryan, M. R. Chaharmir, J. Shaker, J. R. Bray, Y. M. M. Antar, and A. Ittipiboon, “A wideband transmitarray using dual resonant double square rings,” IEEE Trans. Antennas Propag., vol. 58, no. 5, pp. 1486-1493, 2010.
A. H. Abdelrahman, A. Z. Elsherbeni, and F. Yang, “High-gain and broadband transmitarray antenna using triple-layer spiral dipole elements,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 1288-1291, 2014.
Q. Luo, S. Gao, M. Sobhy, and X. Yang, “Wideband transmit array with reduced profile,” IEEE Antennas Wireless Propag. Lett., vol. 17, no. 3, pp. 450-453, 2018.
X. Lv, Z. Han, X. Jian, Y. Zhang, and Q. Chen, “A wideband transmit array using triple-layer elements with reduced profile,” IEICE Electron. Express, vol. 17, 20190678, 2020.
C. Tian, Y.-C. Jiao, G. Zhao, and H. Wang, “A wideband transmitarray using triple-layer elements combined with cross slots and double square rings,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 1561-1564, 2017.
M. Faenzi, G. Minatti, and S. Maci, “Metasurface antennas: Design and performance,” IEICE Transactions on Communications, vol. E102.B, no. 2, pp. 174-181, 2019.
G.-M. Zhang, J.-S. Hong, and B.-Z. Wang, “A novel pattern reconfigurable wideband slot antenna using PIN diodes,” in International Conference on Microwave and Millimeter Wave Technology,2010.
R. Lian, Z. Tang, and Y. Yin, “Design of a broadband polarization-reconfigurable Fabry-Perot resonator antenna,” IEEE Antennas Wireless Propag. Lett., vol. 17, no. 1, pp. 122-125, 2018.
S.-L. Chen, F. Wei, P.-Y. Qin, Y. Jay Guo, and X. Chen, “A multi-linear polarization reconfigurable unidirectional patch antenna,” IEEE Trans. Antennas Propag., vol. 65, no. 8, pp. 4299-4304, 2017.
W. Lin and H. Wong, “Polarization reconfigurable aperture-fed patch antenna and array,” IEEE Access, vol. 4, pp. 1510-1517, 2016.
A. Bhattacharjee, S. Dwari, and M. K. Mandal, “Polarization-reconfigurable compact monopole antenna with wide effective bandwidth,” IEEE Antennas Wireless Propag. Lett., vol. 18, pp. 1041-1045, 2019.
Y. J. Liu and Y. H. Ge, “Polarization-reconfigurable flat transmitarray based on square frame and crossed dipole elements,” IEICE Transactions on Communications, vol. E100. B, pp. 1904-1910, 2017.
X. Yi, T. Su, X. Li, B. Wu, and L. Yang, “A double-layer wideband transmitarray antenna using two degrees of freedom elements around 20 GHz,” IEEE Trans. Antennas Propag., vol. 67, no. 4, pp. 2798-2802, 2019.
X.-J. Yi, T. Su, B. Wu, J.-Z. Chen, L. Yang, and X. Li, “A double-layer highly efficient and wideband transmitarray antenna,” IEEE Access, vol. 7, pp. 23285-23290, 2019.
C.-H. Lee and J.-H. Lee, “Low profile high-efficiency transmitarray antenna based on hybrid frequency selective surface,” IEICE Transactions on Communications, vol. E104. B, no. 1, pp. 49-54, 2021.
B. Rahmati and H. R. Hassani, “High-efficient wideband slot transmitarray antenna,” IEEE Trans. Antennas Propag., vol. 63, no. 11, pp. 5149-5155, 2015.
T. Cai, G.-M. Wang, X.-L. Fu, J.-G. Liang, and Y.-Q. Zhuang, “High-efficiency metasurface with polarization dependent transmission and reflection properties for both reflectarray and transmit array,” IEEE Trans. Antennas Propag., vol. 66, no. 6, pp. 3219-3224, 2018.
H. Hao, X. Ran, Y. Tang, S. Zheng, and W. Ruan, “A single-layer focusing metasurface based on induced magnetism,” Progress in Electromagnetics Research, vol. 172, pp. 77-88, 2021.
J. Zheng, X. Chen, and Y. Huang, “An effective antenna pattern reconstruction method for planar near-field measurement system,” IEEE Transactions on Instrumentation and Measurement, vol. 71, Art. no. 8005012, 2022.
J. Zheng, C. Pan, Z. Wang, L. Zhang, and X. Chen, “An efficient data reconstruction method for broadband planar near-field measurements based on the field distribution similarity,” IEEE Transactions on Instrumentation and Measurement, vol. 72, Art. no. 1008514, 2023.
J. Tang, X. Meng, X. Chen, R. Chen, Y. Da, S. Zhu, A. Zhang, and M. Yu, “Efficient angle calibration method for peak beam measurements in transmitarray-based compact antenna test range,” IEEE Transactions on Electromagnetic Compatibility, vol. 65, no. 6, pp. 1941-1951,2023.
J. Tang, X. Chen, X. Meng, Z. Wang, Y. Ren, C. Pan, X. Huang, M. Li, and A. A. Kishk, “Compact antenna test range using very small F/D transmitarray based on amplitude modification and phase modulation,” IEEE Transactions on Instrumentation and Measurement, vol. 71, Art. no. 8001614, 2022.