Single-mode Condition and Bending Loss Analysis of Ultrafast Laser-inscribed Mid-infrared Waveguides in GeAsSe Chalcogenide Glass

Authors

  • Takashi Yasui Faculty of Engineering, Kitami Institute of Technology, Kitami-shi, Hokkaido, 090-8507, Japan

DOI:

https://doi.org/10.13052/2023.ACES.J.381207

Keywords:

Astrophotonics, beam-propagation method, bending-loss analysis, finite-element method, optical waveguide, single-mode condition

Abstract

In this study, single-mode conditions and bending losses of optical waveguides based on Ge33As12Se55 chalcogenide glass, commercially known as IG2, for astrophotonic devices in the mid-infrared spectral range are numerically analyzed. The scalar finite-element method was used to analyze single-mode conditions. For the bending-loss analysis, equivalent straight waveguides of bent waveguides were analyzed using the two-dimensional finite-difference beam-propagation method. The results revealed design rules for astrophotonic optical integrated circuits in the mid-infrared spectral range.

Downloads

Download data is not yet available.

Author Biography

Takashi Yasui, Faculty of Engineering, Kitami Institute of Technology, Kitami-shi, Hokkaido, 090-8507, Japan

Takashi Yasuiya graduated with the B.S. degree in Electronic Engineering from Fukui University, Fukui, Japan, in 1997, and the M.S. and Ph.D. degrees in Electronic Engineering from Hokkaido University, Sapporo, Japan, in 1999 and 2001, respectively. From 1999 to 2002, he was a Research Fellow of the Japan Society for the Promotion of Science. In 2002, he joined Fujitsu Ltd., Chiba, Japan. From 2004 to 2011, he was an Assistant Professor of the Department of Electronic and Control Systems Engineering, Shimane University, Matsue, Japan. Since 2011, he has been an Associate Professor of the Faculty of Engineering, Kitami Institute of Technology, Kitami, Japan. He has been engaged in research on wave electronics. Yasui is a member of the IEEE, the Optica, and the Institute of Electronics, Information and Communication Engineers (IEICE) of Japan. In 2018, he was awarded the Excellent Paper Award from IEICE.

References

A. N. Dinkelaker, A. Rahman, J. Bland-Hawthorn, F. Cantalloube, S. Ellis, P. Feautrier, M. Ireland, L. Labadie, and R. R. Thomson, “Astrophotonics: Introduction to the feature issue,” J. Opt. Soc. Am. B, vol. 38, no. 7, pp. AP1-AP6, July 2021.

J. Bland-Hawthorn and P. Kern, “Astrophotonics: A new era for astronomical instruments,” Opt. Express, vol. 17, no. 3, pp. 1880-1884, Feb. 2009.

J. Bland-Hawthorn and S. G. Leon-Saval, “Astrophotonics: Molding the flow of light in astronomical instruments,” Opt. Express, vol. 25, no. 13, pp. 15549-15557, June 2017.

S. Xie, J. Zhan, Y. Hu, Y. Zhang, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Add–drop filter with complex waveguide Bragg grating and multimode interferometer operating on arbitrarily spaced channels,” Opt. Lett., vol. 43, no. 24, pp. 6045-6048, Dec. 2018.

A. S. Nayak, T. Poletti, T. K. Sharma, K. Madhav, E. Pedretti, L. Labadie, and M. M. Roth, “Chromatic response of a four-telescope integrated-optics discrete beam combiner at the astronomical L band,” Opt. Express, vol. 28, no. 23, pp. 34346-34361, Nov. 2020.

N. Cvetojevic, “Starlight on a chip: Astrophotonic technologies for interferometry,” in P. G. Tuthill, A. Mérand, and S. Sallum, editors, Optical and Infrared Interferometry and Imaging VII, vol. 11446, p. 1144616, International Society for Optics and Photonics, SPIE, 2020.

M.-A. Martinod, P. Tuthill, S. Gross, B. Norris, D. Sweeney, and M. J. Withford, “Achromatic photonic tricouplers for application in nulling interferometry,” Appl. Opt., vol. 60, no. 19, pp. D100-D107, July 2021.

A. Benoît, F. A. Pike, T. K. Sharma, D. G. MacLachlan, A. N. Dinkelaker, A. S. Nayak, K. Madhav, M. M. Roth, L. Labadie, E. Pedretti, T. A. ten Brummelaar, N. Scott, V. C. du Foresto, and R. R. Thomson, “Ultrafast laser inscription of asymmetric integrated waveguide 3 dB couplers for astronomical K-band interferometry at the CHARA array,” J. Opt. Soc. Am. B, vol. 38, no. 9, pp. 2455-2464, Sep. 2021.

M. M. Roth, K. Madhav, A. Stoll, D. Bodenmüller, A. N. Dinkelaker, A. Rahman, E. Hernandez, A. Günther, and S. Vjesnica, “Astrophotonics: Photonic integrated circuits for astronomical instrumentation,” in S. M. García-Blanco and P. Cheben, editors, Integrated Optics: Devices, Materials, and Technologies XXVII, vol. 12424, p. 124240B, International Society for Optics and Photonics, SPIE, 2023.

M. Benisy, J.-P. Berger, L. Jocou, P. Labeye, F. Malbet, K. Perraut, and P. Kern, “An integrated optics beam combiner for the second generation VLTI instruments,” Astron. Astrophys., vol. 498, pp. 601-613, Oct. 2009.

R. R. Thomson, A. K. Kar, and J. Allington-Smith, “Ultrafast laser inscription: An enabling technology for astrophotonics,” Opt. Express, vol. 17, no. 3, pp. 1963-1969, Feb. 2009.

J. E. McCarthy, H. T. Bookey, N. D. Psaila, R. R. Thomson, and A. K. Kar, “Mid-infrared spectral broadening in an ultrafast laser inscribed gallium lanthanum sulphide waveguide,” Opt. Express, vol. 20, no. 2, pp. 1545-1551, Jan. 2012.

A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, and R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” Opt. Lett., vol. 37, no. 3, pp. 392-394, Feb. 2012.

H. L. Butcher, D. G. MacLachlan, D. Lee, R. R. Thomson, and D. Weidmann, “Ultrafast laser-inscribed mid-infrared evanescent field directional couplers in GeAsSe chalcogenide glass,” OSA Continuum, vol. 1, no. 1, pp. 221-228, Sep.2018.

H. L. Butcher, D. G. MacLachlan, D. Lee, R. R. Thomson, and D. Weidmann, “Demonstration and characterization of ultrafast laser-inscribed mid-infrared waveguides in chalcogenide glass IG2,” Opt. Express, vol. 26, no. 8, pp. 10930-10943, Apr. 2018.

L. Labadie and O. Wallner, “Mid-infrared guided optics: A perspective for astronomical instruments,” Opt. Express, vol. 17, no. 3, pp. 1947-1962, Feb. 2009.

B. R. M. Norris, N. Cvetojevic, T. Lagadec, N. Jovanovic, S. Gross, A. Arriola, T. Gretzinger, M.-A. Martinod, O. Guyon, J. Lozi, M. J. Withford, J. S. Lawrence, and P. Tuthill, “First on-sky demonstration of an integrated-photonic nulling interferometer: The GLINT instrument,” Monthly Notices of the Royal Astronomical Society, vol. 491, no. 3, pp. 4180-4193, Nov. 2019.

N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier, “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett., vol. 31, no. 12, pp. 1860-1862, June 2006.

Vitron, “IG2 datasheet,” https://www.vitron.de/files/VITRON˙IG-2˙Datenblatt˙Okt˙2020˙˙1˙.pdf, Oct. 2020.

W. Hu, M. Kilinc, W. Gebremichael, C. Dorrer, and J. Qiao, “Morphology and waveguiding properties of ultrafast-laser-inscribed type-II waveguides in IG2,” Opt. Mater. Express, vol. 12, no. 1, pp. 360-373, Jan. 2022.

M. Koshiba, Optical Waveguide Theory by the Finite Element Method, Tokyo, KTK Scientific Publishers, 1992.

G. Pedrola, Beam Propagation Method for Design of Optical Waveguide Devices, John Wiley & Sons, 2015.

M. Heiblum and J. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron., vol. 11, no. 2, pp. 75-83, Feb. 1975.

K. Petermann, “Microbending loss in monomode fibers,” Electron. Lett., vol. 12, no. 4, pp. 107-109, Feb. 1976.

J. Saijonmaa and D. Yevick, “Beam-propagation analysis of loss in bent optical waveguides and fibers,” J. Opt. Soc. Am., vol. 73, no. 12, pp. 1785-1791, Dec. 1983.

R. Baets and P. E. Lagasse, “Loss calculation and design of arbitrarily curved integrated-optic waveguides,” J. Opt. Soc. Am., vol. 73, no. 2, pp. 177-182, Feb. 1983.

Y. Nito, D. Kadowake, J. Yamauchi, and H. Nakano, “Bent embedded optical waveguide with a loaded metal film for reducing a polarization dependent loss,” J. Lightwave Technol., vol. 31, no. 19, pp. 3195-3202, Oct. 2013.

G. R. Hadley, “Wide-angle beam propagation using Padé approximant operators,” Opt. Lett., vol. 17, no. 20, pp. 1426-1428, Oct. 1992.

G. R. Hadley, “Transparent boundary condition for beam propagation,” Opt. Lett., vol. 16, no. 9, pp. 624-626, May 1991.

J. Yamauchi, T. Ando, M. Ikegaya, and H. Nakano, “Effects of trench location on the attenuation constant in bent step-index optical waveguides,” IEICE Trans. Electron., vol. E77-C, no. 2, pp. 319-321, Feb. 1994.

M. Rivera, “A finite difference BPM analysis of bent dielectric waveguides,” J. Lightwave Technol., vol. 13, no. 2, pp. 233-238, Feb. 1995.

W. J. Song, G. Song, B. H. Ahn, and M. Kang, “Scalar BPM analyses of TE and TM polarized fields in bent waveguides,” IEEE Trans. Antennas Propag., vol. 51, no. 6, pp. 1185-1198, June 2003.

Downloads

Published

2023-12-30

How to Cite

[1]
T. Yasui, “Single-mode Condition and Bending Loss Analysis of Ultrafast Laser-inscribed Mid-infrared Waveguides in GeAsSe Chalcogenide Glass”, ACES Journal, vol. 38, no. 12, pp. 975–980, Dec. 2023.