Design and Comparative Analysis of Ultra-wideband and High Directive Antennas for THz Applications

Authors

  • Ali Yahyaoui Electrical and Computer Engineering Department, Faculty of Engineering, King Abdulaziz University P.O. Box 80204, Jeddah 21589, Saudi Arabia
  • Jawad Yousaf Department of Electrical, Computer and Biomedical Engineering, Abu Dhabi University, United Arab Emirates
  • Amira Dhiflaoui University of Tunis El Manar (UTM), National Engineering School of Tunis (ENIT) Communications Systems Laboratory (SysCom), BP 37, Belvédère 1002 Tunis, Tunisia
  • Majid Nour Electrical and Computer Engineering Department, Faculty of Engineering, King Abdulaziz University P.O. Box 80204, Jeddah 21589, Saudi Arabia
  • Mohamed Zarouan Electrical and Computer Engineering Department, Faculty of Engineering, King Abdulaziz University P.O. Box 80204, Jeddah 21589, Saudi Arabia
  • Mohammed Aseeri National Center for Telecommunications and Defense System Technologies (TDST) King Abdulaziz City of Science and Technology (KACST), Riyadh, Saudi Arabia
  • Hatem Rmili Electrical and Computer Engineering Department, Faculty of Engineering, King Abdulaziz University P.O. Box 80204, Jeddah 21589, Saudi Arabia

Keywords:

Bowtie antenna, high directivity, log spiral antenna, photoconductive THz antenna, Vivaldi antenna, wideband

Abstract

This work presents a comprehensive detailed comparative study of the three ultra-wideband and high directive antennas for the THz imaging, spectroscopy, and communication applications. Three different types of photoconductive antennas (log-spiral, Vivaldi, and bowtie antennas) are designed and simulated in the frequency range of 1 to 6 THz in the CST microwave studio (MWS). The enhanced directivity of the designed PCAs is achieved with the integration of the hemispherical silicon-based lens with the PCA gold electrode and quartz substrate of the proposed antennas. The performance of the designed PCAs is compared in terms of impedance and axial ratio bandwidths, directivity, and radiation efficiency of the proposed antennas. The reported log spiral, Vivaldi PCAs with added silicon lens exhibit the -10 dB impedance bandwidth of 6 THz, 3dB AR bandwidth of 5 THz, 6 THz, and 6 THz and peak total radiation efficiencies of 45%, 65%, and 95% respectively.

Downloads

Download data is not yet available.

References

P. U. Jepsen, D. G. Cooke, and M. Koch, "Terahertz spectroscopy and imaging – Modern techniques and applications," Laser & Photonics Reviews, vol. 5, no. 1, pp. 124-166, Jan. 3, 2011. [2] I. Kasalynas, R. Venckevicius, and G. Valusis, "Continuous wave spectroscopic terahertz imaging with InGaAs bow-tie diodes at room temperature," IEEE Sensors Journal, vol. 13, no. 1, pp. 50-54, 2013. [3] Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, "Detection and identification of explosives using terahertz pulsed spectroscopic imaging," Applied Physics Letters, vol. 86, no. 24, p. 241116, June 13, 2005. [4] M. Bashirpour, M. Forouzmehr, S. E. Hosseininejad, M. Kolahdouz, and M. Neshat, "Improvement of terahertz photoconductive antenna using optical antenna array of ZnO nanorods," Scientific Reports, vol. 9, no. 1, p. 1414, Feb. 5, 2019. [5] I. Malhotra, K. R. Jha, and G. Singh, "Terahertz antenna technology for imaging applications: A technical review," International Journal of Microwave and Wireless Technologies, vol. 10, no. 3, pp. 271-290, 2018. [6] A. Dhiflaoui, A. Yahyaoui, J. Yousaf, T. Aguili, B. Hakim, H. Rmili, and R. Mittra, "Full wave numerical analysis of wideband and high directive log spiral THz photoconductive antenna," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, p. e2761. [7] J. Yousaf, A. Yahyaoui, B. Hakim, M. Zarouan, W. Zouch, T. Aguili, and H. Rmili, "Design and analysis of ultra-wideband and high directive THz photoconductive Vivaldi antenna," Applied Computational Electromagnetic Society (ACES) Journal, vol. 35, no. 10, pp. 1242-1254, Oct. 2020. [8] N. Zhu and R. W. Ziolkowski, "Photoconductive THz antenna designs with high radiation efficiency, high directivity, and high aperture efficiency," IEEE Transactions on Terahertz Science and Technology, vol. 3, no. 6, pp. 721-730, 2013. [9] A. Dhiflaoui, A. Yahyaoui, J. Yousaf, S. Bashir, B. Hakim, T. Aguili, H. Rmili, and R. Mittra, "Numerical analysis of wideband and high directive bowtie THz photoconductive antenna," Applied Computational Electromagnetic Society (ACES) Journal, vol. 35, no. 6, pp. 662-672, June 2020. [10] N. M. Burford and M. O. El-Shenawee, Review of Terahertz Photoconductive Antenna Technology (no. 1 %J Optical Engineering). SPIE, 2017, pp. 1- 20, 2017. [11] S.-G. Park, Y. Choi, Y.-J. Oh, and K.-H. Jeong, "Terahertz photoconductive antenna with metal nanoislands," Optics Express, vol. 20, no. 23, pp. 25530-25535, Nov. 5, 2012. [12] L. Hou and W. Shi, "An LT-GaAs terahertz photoconductive antenna with high emission power, low noise, and good stability," IEEE Transactions on Electron Devices, vol. 60, no. 5, pp. 1619-1624, 2013. [13] A. Jooshesh, F. Fesharaki, V. Bahrami-Yekta, M. Mahtab, T. Tiedje, T. E. Darcie, and R. Gordon, "Plasmon-enhanced LT-GaAs/AlAs heterostructure photoconductive antennas for sub-bandgap terahertz generation," Optics Express, vol. 25, no. 18, pp. 22140-22148, Sep. 4, 2017. [14] M. Tani, S. Matsuura, K. Sakai, and S.-I. Nakashima, "Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs," Applied Optics, vol. 36, no. 30, pp. 7853-7859, Oct. 20, 1997. [15] M. S. Kong, J. S. Kim, S. P. Han, N. Kim, K. Moon, K. H. Park, and M. Y. Jeon, "Terahertz radiation using log-spiral-based low-temperaturegrown InGaAs photoconductive antenna pumped by mode-locked Yb-doped fiber laser," Optics Express, vol. 24, no. 7, pp. 7037-7045, Apr. 4, 2016. [16] S. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, "7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes," IEEE Transactions on Terahertz Science and Technology, vol. 4, no. 5, pp. 575-581, 2014. [17] A. Gupta, G. Rana, A. Bhattacharya, A. Singh, R. Jain, R. D. Bapat, S. P. Duttagupta, and S. S. Prabhu, "Enhanced optical-to-THz conversion efficiency of photoconductive antenna using dielectric nano-layer encapsulation," APL Photonics, vol. 3, no. 5, p. 051706, May 1, 2018. [18] C. Headley, L. Fu, P. Parkinson, X. Xu, J. LloydHughes, C. Jagadish, and M. B. Johnston, "Improved performance of GaAs-based terahertz emitters via surface passivation and silicon nitride encapsulation," IEEE Journal of Selected Topics in Quantum Electronics, vol. 17, no. 1, pp. 17-21, 2011. [19] S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, "Enhancement of terahertz pulse emission by optical nanoantenna," ACS Nano, vol. 6, no. 3, pp. 2026-2031, Mar. 27, 2012. 318 ACES JOURNAL, Vol. 36, No. 3, March 2021 [20] M. Bashirpour, S. Ghorbani, M. Forouzmehr, M. R. Kolahdouz, and M. Neshat, "Optical absorption enhancement in LTG-GaAs for efficiency improvement of THz photoconductive antennas," in 2016 Fourth International Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT), pp. 14-16, 2016. [21] A. Jyothi, C. Saha, B. Ghosh, R. Kini, and C. Vaisakh, "Design of a gain enhanced THz bow-tie photoconductive antenna," in 2016 International Symposium on Antennas and Propagation (APSYM), pp. 1-3, 2016. [22] I. Malhotra, K. R. Jha, and G. Singh, "Design of highly directive lens-less photoconductive dipole antenna array with frequency selective surface for terahertz imaging applications," Optik, vol. 173, pp. 206-219, Nov. 1, 2018. [23] K. Han, Y. Park, S. Kim, H. Han, I. Park, and H. Lim, "A terahertz Yagi-Uda antenna for high input impedance," in 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves, pp. 1-2, 2008. [24] R. Singh, C. Rockstuhl, C. Menzel, T. P. Meyrath, M. He, H. Giessen, F. Lederer, and W. Zhang, "Spiral-type terahertz antennas and the manifestation of the Mushiake principle," Optics Express, vol. 17, no. 12, pp. 9971-9980, June 8, 2009. [25] U. Deva and C. Saha, "Gain enhancement of photoconductive THz antenna using conical GaAs horn and Si lens," in 2016 International Symposium on Antennas and Propagation (APSYM), pp. 1-3, 2016. [26] G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, "Large-area microlens emitters for powerful THz emission," Applied Physics B, vol. 96, no. 2, pp. 233-235, Aug. 1, 2009. [27] A. Singh and S. S. Prabhu, "Microlensless interdigitated photoconductive terahertz emitters," Optics Express, vol. 23, no. 2, pp. 1529-1535, Jan. 26, 2015. [28] F. Formanek, M.-A. Brun, T. Umetsu, S. Omori, and A. Yasuda, "Aspheric silicon lenses for terahertz photoconductive antennas," Applied Physics Letters, vol. 94, no. 2, p. 021113, Jan. 12, 2009. [29] Q. Yu, J. Gu, Q. Yang, Y. Zhang, Y. Li, Z. Tian, C. Ouyang, J. Han, J. F. O. Hara, and W. Zhang, "All-dielectric meta-lens designed for photoconductive terahertz antennas," IEEE Photonics Journal, vol. 9, no. 4, pp. 1-9, 2017. [30] B. Pradarutti, R. Müller, W. Freese, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, "Terahertz line detection by a microlens array coupled photoconductive antenna array," Optics Express, vol. 16, no. 22, pp. 18443- 18450, Oct. 27, 2008. [31] R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, and H. L. Hartnagel, "Spectral characterization of broadband THz antennas by photoconductive mixing: toward optimal antenna design," IEEE Antennas and Wireless Propagation Letters, vol. 4, pp. 85-88, 2005. [32] V. Rumsey, "Frequency independent antennas," in 1958 IRE International Convention Record, IEEE, vol. 5, pp. 114-118, 1966. [33] W. Amara, A. Alghamdi, D. Oueslati, N. Eltresy, M. Sheikh, H. Rmili, "Analysis of infrared nanoantennas material properties for solar energy collection," Applied Computational Electromagnetic Society (ACES) Journal, vol. 35, no. 3, pp. 258-266, Mar. 2020.

Downloads

Published

2021-03-08

How to Cite

[1]
Ali Yahyaoui, “Design and Comparative Analysis of Ultra-wideband and High Directive Antennas for THz Applications”, ACES Journal, vol. 36, no. 3, pp. 308–319, Mar. 2021.

Issue

Section

Articles