Compact Tri-Band Microstrip Patch Antenna Using Complementary Split Ring Resonator Structure
Keywords:
CSRR, patch antenna, radiation pattern, tri-bandAbstract
In this letter, a compact complementary split ring based tri-band antenna is proposed. The proposed antenna resonates at 1.9 GHz (1.70-1.91 GHz), 2.45 GHz (2.23-2.52 GHz) and 3.2 GHz (2.9-3.25 GHz); the input match values are 24.56 dB, 27.21 dB and 22.46 dB, respectively. The antenna’s realised peak gain is 4.15 dBm at 1.9 GHz, 4.25 dBm at 2.4 GHz and 4.74 dBm at 3.2 GHz, with approximately 42% of reduction in antenna size. The results demonstrate that the proposed metamaterial antenna is tunable, electrically small and highly efficient, which makes it a suitable candidate for RF energy harvesting. The antenna is numerically and experimentally analysed and validated with very good comparison between the simulated and measured results.
Downloads
References
W. W. Li, J. S. Su, J. H. Zhou, and Z. Y. Shi, “Compact wide triband multicavity coupled slot antenna,” Microwave and Optical Technology Letters, pp. 157-163, 2017.
H. Wong, K. M. Luk, C. H. Chan, Q. Xue, K. K. So, and H. W. Lai, “Small antennas in wireless communications,” Proceedings IEEE, pp. 2109- 2121, 2012.
M. Fallahpour and R. Zoughi, “Antenna miniaturization rechniques,” IEEE Antenna and Propagation Magazine, pp. 38-50, 2018.
Geetanjali1 and R. Khanna, “A review of various multi-frequency antenna design techniques,” Indian Journal of Science and Technology, pp. 1-6, 2017.
T. Ali, M. M. Khaleeq, S. Pathan, and R. C. Biradar, “A multiband antenna loaded with metamaterial and slots for GPS/WLAN/WiMAX applications,” Microwave Optical and Technology Letters, pp. 79-85, 2017.
K. Srivastava, A. Kumar, and B. K. Kanaujia, “Design of compact penta-band and hexa-band microstrip antennas,” Frequenz, pp. 101-111, 2016.
Y. Mao, S. Guo, and M. Chen, “Compact dualband monopole antenna with defected ground plane for internet of things,” IET Microwave and Antennas Propagation, pp. 1332-1338, 2018.
D. K. Naji, “Compact design of dual-band fractal ring antenna for WiMAX and WLAN applications,” International Journal of Electromagnetics and Applications, pp. 42-50, 2016.
V. Sharma, N. Lakwar, N. Kumar, and T. Garg, “Multiband low-cost fractal antenna based on parasitic split ring resonators,” IET Microwave and Antennas Propagation, pp. 913-919, 2018.
R. Pandeeswari and S. Raghavan, “A CPW-fed triple band OCSRR embedded monopole antenna with modified ground for WLAN and WIMAX applications,” Microwave and Optical Technology Letters, pp. 2413-2418, 2015.
C. Elavarasi and T. Shanmuganantham, “Multiband SRR loaded Koch star fractal antenna,” Alexandria Engineering Journal, pp. 1-7, 2017.
M. S. Sedghi, M. N.Moghadasi, and F. B. Zarrabi, “A dual band fractal slot antennaloaded with Jerusalem crosses for wireless and WiMAX communications,” Progress in Electromagnetics Research Letters, pp. 19-24, 2016.
A. KarimbuVallappil, B. A. Khawaja, I. Khan, and M. Mustaqim, “Dual-band Minkowski–Sierpinski fractal antenna for next generation satellite communications and wireless body area networks,” Microwave and Optical Technology Letters, pp. 171-178, 2017.
S. Huang, J. Li, and J. Zhao, “Miniaturized CPWfed triband antenna with asymmetric ring for WLAN/WiMAX applications,” Hindawi Publishing Corporation Journal of Computer Networks and Communications, 2014.
T. Mandal and S. Das, “Coplanar waveguide fed 9- point star shape monopole antennas for worldwide interoperability for microwave access and wireless local area network applications,” The Journal of Engineering, no. 4, pp. 155-160, 2014.
R. Rajkumar and K. Usha Kiran, “A metamaterial inspired compact open split ring resonator antenna for multiband operation,” Wireless Personal Communication, 2017. [17] K. B. Alici and E. Ozbay, “Electrically small split ring resonator antennas,” J. Appl. Phys., vol. 101, p. 08314, 2007.
M. Barbuto, F. Bilotti, and A. Toscano, “Design of a multifunctional SRR-loaded printed monopole antenna,” Int. J. RF Microw., CAE, vol. 22, pp. 552-557, 2012.
M. Barbuto, A. Monti, F. Bilotti, and A. Toscano, “Design of a non-foster actively loaded SRR and application in metamaterial-inspired components,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 3, pp. 1219-1227, Mar. 2013.
M. F. Wu, F. Y. Meng, Q. Wu, J. Wu, and L. W. Li, “A compact equivalent circuit model for the SRR structure in metamaterials,” Asia-Pacific Microwave Conference Proceeding, pp. 5-8, 2005.
Q. Wu, M.-F. Wu, F.-Y. Meng, J. Wu, and J. Li, “Research on SRR structure metamaterial based on Ref. Year Frequency Bands (GHz) Return Loss (S11) (dB) VSWR Size of Antenna (mm2 ) Area (mm2 ) [30] 2013 1.81-1.87, 2.11-2.17 ≈ 14,16 No data 145 × 55 7975 [31] 2018 1.8-2.45 ≈ 18,26 No data 77 × 98 7546 [32] 2018 1.74-1.97, 2-2.22, 2.41-2.59 Not Mentioned No data 70 × 65 4550 [33] 2019 1.7-1.925 ≈ 30 No data 70 × 70 4900 This work 1.9,2.45,3.19 24.56,27.21,22.46 1.09,1.05,1.12 50 x 56.5 2825 KUMAR, SATHYA, RAHIM, NOR, ALOMAINY, ETENG: COMPACT TRI-BAND MICROSTRIP PATCH ANTENNA 351 transmission line theory,” Dianbo Kexue Xebio/ Chinese Journal of Radio Science, pp. 310-314, 2006.
Q. Wu, M. F. Wu, F. Y. Meng, J. Wu, and L. W. Li, “Modeling the effects of an individual SRR by equivalent circuit method,” IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), 2005.
A. Salim and S. Lim, “Complementary split-ring resonator-loaded microfluidic ethanol chemical sensor,” Sensors (Switzerland), pp. 1-13, 2016.
A. Albishi and O. M. Ramahi, “Detection of surface and subsurface cracks in metallic and nonmetallic materials using a complementary splitring resonator,” Sensors (Switzerland), pp.19354- 19370, 2014.
J. D. Baena, J. Bonache, F. Martín, R. M. Silero, F. Falcone, T. Lopetegi, J. Garcia-Garcia, I. Gil, M. F. Partilo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Transactions on Microwave Theory and Technology, pp. 1451-1460, 2005.
F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, F. Martín, and R. M. Silero, “Babinet principle applied to the design of metasurfaces and metamaterials,” Physical Review Letters, pp. 1-4, 2004.
R. Marqués, J. D. Baena, F. Martín, and J. FJ. Bonache, “Left handed metamaterial based on dual split ring resonators in microstrip,” Proceeding International URSI, pp. 23-27, 2004.
M. F. Wu, K. Y. Meng, Q. Wu, J. Wu, and L. W. Li, “A compact equivalent circuit model for the SRR Structure in metamaterials,” Asia Pacific Microwave Conference Proceedings, pp.5-8, 2005.
H. Sun, Y. X. Guo, M. He, and Z. Zhong, “A dualband rectenna using broadband Yagi antenna array for ambient rf power harvesting,” IEEE Antennas Wireless and Propagation Letters, pp. 918-921, 2013.
H. Takhedmiti, L. Cirio, and Z. Saddii J.D., and L. S. Luk, “A novel dual-frequency rectifier based on an 1800 hybrid junction for RF energy harvesting,” 7th European Conference Antennas Propagation (EUCAP), pp. 2472-2475, 2013.
Z. Li, M. Zeng, and H. Z. Tan. “A multi-band rectifier with modified hybrid junction for RF energy harvesting,” Microwave and Optical Technology Letters, pp. 817-821, 2018.
Z. Li, M. Zeng, and H. Z. Tan, “A multi-band rectifier with modified hybrid junction for RF energy harvesting,” Microwave and Optical Technology Letters, pp. 817-821, 2018.
M. A. Gozel, M. Kahriman, and O. Kasar, “Design of an efficiency enhanced Greinacher rectifier operating in the GSM 1800 band by using rat-race coupler for RF energy harvesting applications,” International journal of RF Microwave and Computer Engineering, pp. 1-18, 2019. N. RajeshKumar is a Research