Spread Spectrum Time Domain Reflectometry and Steepest Descent Inversion Spread Spectrum Time Domain Reflectometry and Steepest Descent Inversion
Keywords:
Spread Spectrum, Steepest Descent InversionAbstract
In this paper, we present a method for estimating complex impedances using reflectometry and a modified steepest descent inversion algorithm. We simulate spread spectrum time domain reflectometry (SSTDR), which can measure complex impedances on energized systems for an experimental setup with resistive and capacitive loads. A parametric function, which includes both a misfit function and stabilizer function, is created. The misfit function is a least squares estimate of how close the model data matches observed data. The stabilizer function prevents the steepest descent algorithm from becoming unstable and diverging. Steepest descent iteratively identifies the model parameters that minimize the parametric function. We validate the algorithm by correctly identifying the model parameters (capacitance and resistance) associated with simulated SSTDR data, with added 3 dB white Gaussian noise. With the stabilizer function, the steepest descent algorithm estimates of the model parameters are bounded within a specified range. The errors for capacitance (220pF to 820pF) and resistance (50 Ω to 270 Ω) are < 10%, corresponding to a complex impedance magnitude |R +1/jωC| of 53 Ω to 510 Ω.
Downloads
References
P. V. Nikitin, K. V. S. Rao, R. Martinez, and S. F. Lam, “Sensitivity and impedance measurements of UHF RFID chips,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 5, pp. 1297-1302, 2009.
D. L. Corwin and S. M. Lesch, “Apparent soil electrical conductivity measurements in agriculture,” Comput. Electron. Agric., vol. 46, no. 1-3, pp. 11- 43, Mar. 2005. KINGSTON, ELLIS, SALEH, BENOIT, EDUN, FURSE, ET AL.: SPREAD SPECTRUM TDR AND STEEPEST DESCENT INVERSION 195
S. P. Bharadwaj, A. E. Ginart, I. N. Ali, P. W. Kalgren, J. R. Celaya, and S. D. Poll, “Solar cells aging estimation based on impedance characterization,” Aerospace Conference, pp. 1-9, Mar. 2011.
W. Stutzman and G. Thiele, Antenna Theory and Design. Wiley Global Education, 2012.
V. Schlosser and A. Ghitas, “Measurement of silicon solar cells AC parameters,” ARSEC, 2006.
P. A. Cotfas, D. T. Cotfas, P. N. Borza, D. Sera, and R. Teodorescu, “Solar cell capacitance determination based on an RLC resonant circuit,” Energies, vol. 11, no. 3, Art. no. 3, Mar. 2018.
R. A. Kumar, M. S. Suresh, and J. Nagaraju, “Facility to measure solar cell ac parameters using an impedance spectroscopy technique,” Rev. Sci. Instrum., vol. 72, no. 8, pp. 3422-3426, July 2001.
D. Rytting, “ARFTG 50 year network analyzer history,” in 2008 71st ARFTG Microwave Measurement Conference, pp. 1-8, 2008.
IET Labs, Inc., “Precision LCR Meter User and Service Manual,” IET Labs, 2014.
Anritsu, “Series 37XXXC Vector Network Analyzer Operations Manual,” Anritsu, 2004.
M. N. Akram and S. Lotfifard, “Modeling and health monitoring of DC side of photovoltaic array,” IEEE Trans. Sustain. Energy, vol. 6, no. 4, pp. 1245-1253, 2015.
J. Haney and A. Burstein, “PV system operations and maintenance fundamentals,” Next Phase Solar, Inc., Aug. 2013.
P. Smith, C. Furse, and J. Gunther, “Analysis of spread spectrum time domain reflectometry for wire fault location,” IEEE Sens. J., vol. 5, no. 6, pp. 1469-1478, Dec. 2005.
C. M. Furse, M. Kafal, R. Razzaghi, and Y. Shin, “Fault diagnosis for electrical systems and power networks: A review,” IEEE Sens. J., pp. 1-1, 2020.
H. Boudjefdjouf, H. R. E. H. Bouchekara, R. Mehasni, M. K. Smail, A. Orlandi, and F. de Paulis, “Wire fault diagnosis using time-domain reflectometry and backtracking search optimization algorithm,” in 31st International Review of Progress in ACES, pp. 1-2, 2015.
S. R. Kingston, N. K. T. Jayakumar, M. U. Saleh, E. J. Benoit, A. S. Edun, R. Sun, C. Furse, M. Scarpulla, and J. B. Harley, “Measurement of capacitance using spread spectrum time domain reflectometry (SSTDR) and dictionary matching,” IEEE Sens. J., pp. 1-1, 2020.
N. K. T. Jayakumar, E. J. Benoit, S. R. Kingston, M. U. Saleh, M. Scarpulla, J. B. Harley, and C. Furse, “Post-processing for improved accuracy and resolution of spread spectrum time domain reflectometry (SSTDR),” IEEE Sens. Lett., vol. 2, no. 3, 2019.
C. Furse, N. K. T. Jayakumar, E. J. Benoit, M. U. Saleh, J. LaCombe, M. Scarpulla, J. B. Harley, S. R. Kingston, B. Waddoups, and C. Deline, “Spread spectrum time domain reflectometry for complex impedances: Application to PV arrays,” IEEE AUTOTESTCON, pp. 1-4, 2018.
F. Cohen‐Tenoudji, B. R. Tittmann, and G. Quentin, “Technique for the inversion of backscattered elastic wave data to extract the geometrical parameters of defects with varying shape,” Appl. Phys. Lett., vol. 41, no. 6, pp. 574-576, Sep. 1982.
M. S. Zhdanov, S. Fang, and G. Hursán, “Electromagnetic inversion using quasi‐linear approximation,” GEOPHYSICS, vol. 65, no. 5, pp. 1501-1513, Sep. 2000.
Inverse Theory and Applications in Geophysics. 2nd ed., Elsevier, 2015.
M. El-Shenawee, C. Rappaport, D. Jiang, and W. Melsei, “Electromagnetics computations using the MPI parallel implementation of the steepest descent fast multipole method (SDFMM),” Applied Computational Electromagnetics Society, vol. 17, no. 2, 2002.
A. A. Goldstein, “On steepest descent,” J. Soc. Ind. Appl. Math. Ser. Control, vol. 3, no. 1, pp. 147-151, 1965.
M. U. Saleh, C. Deline, S. R. Kingston, N. K. T. Jayakumar, E. J. Benoit, J. B. Harley, C. Furse, and M. Scarpulla, “Detection and localization of disconnections in PV strings using spread-spectrum time-domain reflectometry,” IEEE J. Photovolt., vol. 10, no. 1, pp. 236-242, 2020.
R. Jacobs, “Increased rates of convergence through learning rate adaptation,” Neural Netw., vol. 1, pp. 295-307, 1988.