High Quality Factor using Nested Complementary Split Ring Resonator for Dielectric Properties of Solids Sample

Authors

  • Norhanani Abd Rahman 1Centre for Telecommunication Research and Innovation (CeTRI) Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM) 76100 Durian Tunggal, Melaka, Malaysia ,Department of Electrical Engineering, Politeknik Port Dickson (PPD), Negeri Sembilan, Malaysia
  • Zahriladha Zakaria Centre for Telecommunication Research and Innovation (CeTRI) Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM) 76100 Durian Tunggal, Melaka, Malaysia
  • Rosemizi Abd Rahim School of Computer and Communication Engineering, University Malaysia Perlis (UniMAP), Perlis, Malaysia
  • Maizatul Alice Meor Said School of Computer and Communication Engineering, University Malaysia Perlis (UniMAP), Perlis, Malaysia
  • Amyrul Azuan Mohd Bahar Intel Microelectronics, Bayan Lepas Free Industrial Zone, Pulau Pinang, Malaysia
  • Rammah A. Alahnomi 1Centre for Telecommunication Research and Innovation (CeTRI) Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM) 76100 Durian Tunggal, Melaka, Malaysia
  • Ammar Alhegazi 1Centre for Telecommunication Research and Innovation (CeTRI) Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM) 76100 Durian Tunggal, Melaka, Malaysia

Keywords:

Complex permittivity, loss tangent, Qfactor, Nested complementary split ring resonator (CSRR)

Abstract

A Nested complementary split ring resonator (CSRR) was proposed based on planar structure. The main objective of this work is to get a higher quality factor (Q-factor) with minimal error detection of complex permittivity. The sensor operated at the 3.37GHz resonant frequency and simulated by ANSYS HFSS software. Subsequently, the designed sensor has been fabricated and tested with the presence of several material under test (MUTs) placed over the sensor. The result achieved high unloaded Q-factor, 464. There has been proof of good agreement concerning the results between theoretical, simulation, and measured parameters of error detection, which is below 13.2% real part permittivity and 2.3% the loss tangent. The proposed sensor is practically useful for the food industry, bio-sensing, and pharmacy industry applications.

Downloads

Download data is not yet available.

Author Biographies

Norhanani Abd Rahman, 1Centre for Telecommunication Research and Innovation (CeTRI) Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM) 76100 Durian Tunggal, Melaka, Malaysia ,Department of Electrical Engineering, Politeknik Port Dickson (PPD), Negeri Sembilan, Malaysia

Norhanani Abd Rahman is pursuing her Ph.D. in Universiti Teknikal Malaysia Melaka. She is a Lecturer at Politeknik Port Dickson, Negeri Sembilan, Malaysia. Her area of research are microwave sensors for material characterization and microwave/RF applications.

Zahriladha Zakaria, Centre for Telecommunication Research and Innovation (CeTRI) Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM) 76100 Durian Tunggal, Melaka, Malaysia

Zahriladha Zakaria is currently a Professor at Universiti Teknikal Malaysia Melaka. His research areas include microwave filters, resonators, amplifiers and antennas, data communication and radiowave propagation in wireless communication systems.

Rosemizi Abd Rahim, School of Computer and Communication Engineering, University Malaysia Perlis (UniMAP), Perlis, Malaysia

Rosemizi Abd Rahim is a Associate Professor Universiti Malaysia Perlis. His research areas include design, analysis and development of new sources of energy harvesting system and techniques, antenna design and propagation, and microwave heating.

Maizatul Alice Meor Said, School of Computer and Communication Engineering, University Malaysia Perlis (UniMAP), Perlis, Malaysia

Maizatul Alice Meor Said is a Senior Lecturer Universiti Teknikal Malaysia Melaka. Her research areas include RF, microwave, antenna and energy harvesting.

Amyrul Azuan Mohd Bahar, Intel Microelectronics, Bayan Lepas Free Industrial Zone, Pulau Pinang, Malaysia

Amyrul Azuan Mohd Bahar is currently an Engineer at Intel Microelectronics (M), Penang Malaysia. He received the Ph.D. in Universiti Teknikal Malaysia Melaka. His research interest is RFID technology, sensor design, material characterization, power electronics in embedded system technology and microwave/RF applications.

Rammah A. Alahnomi, 1Centre for Telecommunication Research and Innovation (CeTRI) Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM) 76100 Durian Tunggal, Melaka, Malaysia

Rammah Ali Alahnomi is pursuing his Ph.D. in Universiti Teknikal Malaysia Melaka. His research interests include RF and Microwave engineering, antenna design, sensor technology and material characterization applications.

Ammar Alhegazi, 1Centre for Telecommunication Research and Innovation (CeTRI) Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM) 76100 Durian Tunggal, Melaka, Malaysia

Ammar Alhegazi is pursuing his Ph.D. in Universiti Teknikal Malaysia Melaka. His research interests include microwave sensors for material characterization and reconfigurable filtering-antennas.

References

S. Gu, T. Lin, and T. Lasri, “Dielectric properties characterization of saline solutions by near-field microwave microscopy,” Meas. Sci. Technol., vol. 28, no. 1, p. 014014, 2017.

X. Zhang, C. Ruan, T. Ul Haq, and K. Chen, “High-sensitivity microwave sensor for liquid characterization using a complementary circular spiral resonator,” Sensors (Switzerland), vol. 19, no. 4, 2019.

J. G. D. Oliveira, E. N. M. G. Pinto, V. P. S. Neto, and A. G. D’assunção, “CSRR-based microwave sensor for dielectric materials characterization applied to soil water content determination,” Sensors (Switzerland), vol. 20, no. 1, 2020.

A. A. M. Bahar, Z. Zakaria, E. Ruslan, A. A. Md Isa, and R. A. Alahnomi, “Broadband reflectarrays made of cells with three coplanar parallel dipoles,” Microw. Opt. Technol. Lett., vol. 57, no. 2, pp. 367- 371, 2017.

N. A. Rahman, Z. Zakaria, R. A. Rahim, Y. Dasril, and A. A. Mohd Bahar, “Planar microwave sensors for accurate measurement of material characterization : A review,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 62, no. 274, pp. 1108-1118, 2017.

M. Karami, P. Rezaei, S. Kiani, and R. A. Sadeghzadeh, “Modified planar sensor for measuring dielectric constant of liquid materials,” Electron. Lett., vol. 53, no. 19, pp. 1300-1302, 2017.

T. Ozturk, “Demonstration of container effects on recognition process of liquids using a ringresonator measurement method,” Sci. Rep., no. pp. 1-7, Mar. 2019.

M. T. Jilani, M. Z. U. Rehman, A. M. Khan, O. Chughtai, M. A. Abbas, and M. T. Khan, “An implementation of IoT-based microwave sensing system for the evaluation of tissues moisture,” Microelectronics J., vol. 88, pp. 117–127, 2019. Table 4: The comparison of various band-stop sensors for measured complex permittivity Roger 5880 [% Error] [11] FR4 [% Error] [17] Roger 4350 [% Error][18] Methods r’(*M1) r’(*M2) Tan  r’ Tan  r’ Tan  Other 12.7 15.9 - 0.43 4.5 0.43 - This Work 5.75 2.2 2.68 0.3 3.41 0.7 *M1- Method 1, *M2 - Method 2 1226 ACES JOURNAL, Vol. 35, No. 10, October 2020

M. Arif Hussain Ansari, A. K. Jha, Z. Akhter, and M. Jaleel Akhtar, “Multi-band RF planar sensor using complementary split ring resonator for testing of dielectric materials,” IEEE Sens. J., vol. 18, no. 16, pp. 6596-6606, 2018.

M. A. H. Ansari, A. K. Jha, and M. J. Akhtar, “Design and application of the CSRR-based planar sensor for noninvasive measurement of complex permittivity,” IEEE Sens. J., vol. 15, no. 12, pp. 7181-7189, 2015.

I. M. Rusni, A. Ismail, A. R. H. Alhawari, M. N. Hamidon, and N. A. Yusof, “An aligned-gap and centered-gap rectangular multiple split ring resonator for dielectric sensing applications,” Sensors (Switzerland), vol. 14, no. 7, pp. 13134- 13148, 2014.

X. He, X. Hao, S. Yan, F. Wu, and J. Jiang, “Biosensing using an asymmetric split-ring resonator at microwave frequency,” Integr. Ferroelectr., vol. 172, no. 1, pp. 142-146, 2016.

A. Salim and S. Lim, “Complementary split-ring resonator-loaded microfluidic ethanol chemical sensor,” Sensors (Switzerland), vol. 16, no. 11, 2016.

M. Abdolrazzaghi, M. H. Zarifi, and M. Daneshmand, “Sensitivity enhancement of split ring resonator based liquid sensors,” IEEE SENSORS, pp. 1-3, 2016.

D. Pozar, Microwave Engineering Fourth Edition. John Wiley & Sons Ltd., 2005.

M. S. Kheir, H. F. Hammad, and A. Omar, “Broandband material characterization using travelling-wave whispering-gallery-mode dielectric resonators,” Prog. Electromagn. Res. B, vol. 43, pp. 35-52, 2012.

H. Sun, T. Tang, and G. Du, “Improved approach using symmetric microstrip sensor for accurate measurement of complex permittivity,” Int. J. RF Microw. Comput. Eng., vol. 28, no. 5, p. e21258, 2018.

A. Ebrahimi, J. Scott, and K. Ghorbani, “Differential sensors using microstrip lines loaded with two split-ring resonators,” IEEE Sens. J., vol. 18, no. 14, pp. 5786-5793, 2018.

Downloads

Published

2020-10-01

How to Cite

[1]
Norhanani Abd Rahman, “High Quality Factor using Nested Complementary Split Ring Resonator for Dielectric Properties of Solids Sample”, ACES Journal, vol. 35, no. 10, pp. 1222–1227, Oct. 2020.

Issue

Section

Articles