Modified V-Groove Slot Waveguide for DNA Hybridization Detection

Authors

  • Eman ELDamarawy 1 Electronic and Electrical Engineering Department, Faculty of Engineering, Mansoura University, 35516, Egypt 2 Basic Sciences, Higher Future Institute of Engineering and Technology in Mansoura, Mansoura 51, Egypt
  • Ahmed M. Heikal 1 Electronic and Electrical Engineering Department, Faculty of Engineering, Mansoura University, 35516, Egypt, 3 Centre for Photonics and Smart Materials, Zewail City of Science and Technology, October Gardens 6 th of October City, Giza 12578, Egypt
  • Salah S. A. Obayya Centre for Photonics and Smart Materials, Zewail City of Science and Technology, October Gardens 6 th of October City, Giza 12578, Egypt
  • Mohamed Farhat O. Hameed 3 Centre for Photonics and Smart Materials, Zewail City of Science and Technology, October Gardens 6 th of October City, Giza 12578, Egypt, 4 Nanotechnology and Nanoelectronics Program, Zewail City of Science and Technology, October Gardens 6 th of October City, Giza 12578, Egypt, 5 Mathematics and Engineering Physics Department, Faculty of Engineering, Mansoura University Mansoura 35516, Egypt

Keywords:

DNA biosensors, DNA hybridization, plasmonics, slot waveguides, V-groove

Abstract

Highly sensitive slot waveguides are introduced and studied for DNA hybridization detection. In this investigation, two different configurations based on V-groove silicon on insulator (SOI) waveguides are analyzed using full vectorial finite element method. The suggested designs rely on improving the light confinement through the slot region at an operating wavelength of 1.55 μm. The power confinement, power density (PD), and effective index of the supported modes are studied for the conventional rectangular slot waveguide and proposed designs. Further, the effect of adding a plasmonic layer to the reported slot waveguides is implemented. It has been shown that the plasmonic layer increases the light confinement in the slot region with high potential for DNA hybridization detection with good confinement through the slot region.

Downloads

Download data is not yet available.

References

A. Agrawal, R. A. Tripp, L. J. Anderson, and S. Nie, “Real-time detection of virus particles and viral protein expression with two-color nanoparticle probes,” J. Virol., vol. 79, no. 13, pp. 8625-8628, 2005.

K. Kneipp, et al., “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett., vol. 78, no. 9, p. 1667, 1997.

M. D. Hämäläinen, et al., “Characterization of a set of HIV-1 protease inhibitors using binding kinetics data from a biosensor-based screen,” J. Biomol. Screen., vol. 5, no. 5, pp. 353-359, 2000.

S. Sumriddetchkajorn and A. Somboonkaew, “Thermal analyzer enables improved lie detection in criminal-suspect interrogations,” SPIE Newsroom Def. Secur., 2011.

L. Heinemann and G. Schmelzeisen-Redeker, “Non-invasive continuous glucose monitoring in Type I diabetic patients with optical glucose sensors,” Diabetologia, vol. 41, no. 7, pp. 848-854, 1998.

M. F. O. Hameed, Y. K. A. Alrayk, A. A. Shaalan, W. S. El Deeb, and S. S. A. Obayya, “Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor,” J. Nanophotonics, vol. 10, no. 4, 2016 .

T. Dar, J. Homola, B. M. A. Rahman, and M. Rajarajan, “Label-free slot-waveguide biosensor for the detection of DNA hybridization,” Appl. Opt., vol. 51, no. 34, pp. 8195-8202, 2012.

N. F. F. Areed, M. F. O. Hameed, and S. S. A. Obayya, “Highly sensitive face-shaped label-free photonic crystal refractometer for glucose concentration monitoring,” Opt. Quantum Electron., vol. 49, no. 1, 2017.

M. F. O. Hameed, A. S. Saadeldin, E. M. A. Elkaramany, and S. S. A. Obayya, “Label-free highly sensitive hybrid plasmonic biosensor for the detection of DNA hybridization,” J. Light. Technol., vol. 35, no. 22, pp. 4851-4858, 2017.

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express, vol. 15, no. 12, pp. 7610-7615, 2007.

C. A. Barrios, et al., “Label-free optical biosensing with slot-waveguides,” Opt. Lett., vol. 33, no. 7, pp. 708-710, 2008.

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J., vol. 1, no. 3, pp. 197-204, 2009.

J. Guo, J. Wang, J. Zhao, Z. Guo, and Y. Zhang, “Ultrasensitive multiplexed immunoassay for tumor biomarkers based on DNA hybridization chain reaction amplifying signal,” ACS Appl. Mater. Interfaces, vol. 8, no. 11, pp. 6898-6904, 2016.

Z. Cheglakov, T. M. Cronin, C. He, and Y. Weizmann, “Live cell microRNA imaging using cascade hybridization reaction,” J. Am. Chem. Soc., vol. 137, no. 19, pp. 6116-6119, 2015.

S. X. Chen and G. Seelig, “An engineered kinetic amplification mechanism for single nucleotide variant discrimination by DNA hybridization probes,” J. Am. Chem. Soc., vol. 138, no. 15, pp. 5076-5086, 2016.

N. S. Gabr, A. K. Ahmed, U. S. Belal, R. A. M. Abd Rabou, R. F. Ahmed, and E. H. Abdel-Hafeez, “Molecular characterization of Cryptosporidium isolates from humans by nested polymerise chain reaction-restriction fragment length polymorphism (nPCR-RFLP) analysis in Egypt,” Trop. Biomed., vol. 36, no. 1, pp. 1-10, 2019.

R. Yano, O. Shimoda, T. Okitsu, M. Sakurada, and Y. Ueno, “Development of a modified pdimethylaminocinnamaldehyde solution for touch DNA analysis and its application to STR analysis,” Forensic Sci. Int. Genet., vol. 38, pp. 86-92, 2019.

T. Devièse, et al., “Compound-specific radiocarbon dating and mitochondrial DNA analysis of the Pleistocene hominin from Salkhit Mongolia,” Nat. Commun., vol. 10, no. 1, p. 274, 2019.

E. T. Lagally, C. A. Emrich, and R. A. Mathies, “Fully integrated PCR-capillary electrophoresis microsystem for DNA analysis,” Lab Chip, vol. 1, no. 2, pp. 102-107, 2001.

S. Z. Mousavisani, J. B. Raoof, R. Ojani, and Z. Bagheryan, “An impedimetric biosensor for DNA damage detection and study of the protective effect of deferoxamine against DNA damage,” Bioelectrochemistry, vol. 122, pp. 142-148, 2018.

H. Gao, M. Sun, C. Lin, and S. Wang, “Electrochemical DNA biosensor based on graphene and TiO2 nanorods composite film for the detection of transgenic soybean gene sequence of MON89788,” Electroanalysis, vol. 24, no. 12, pp. 2283-2290, 2012.

A. A. Ensafi, N. Kazemnadi, M. Amini, and B. Rezaei, “Impedimetric DNA-biosensor for the study of dopamine induces DNA damage and investigation of inhibitory and repair effects of some antioxidants,” Bioelectrochemistry, vol. 104, pp. 71-78, 2015.

M. Y. Azab, M. F. O. Hameed, A. M. Nasr, and S. S. A. Obayya, “Label free detection for DNA hybridization using surface plasmon photonic crystal fiber biosensor,” Opt. Quantum Electron., vol. 50, no. 2, 2018.

M. Fojta, A. Daňhel, L. Havran, and V. Vyskočil, “Recent progress in electrochemical sensors and assays for DNA damage and repair,” TrAC Trends Anal. Chem., vol. 79, pp. 160-167, 2016.

H. Huang, W. Bai, C. Dong, R. Guo, and Z. Liu, “An ultrasensitive electrochemical DNA biosensor based on graphene/Au nanorod/polythionine for human papillomavirus DNA detection,” Biosens. Bioelectron., vol. 68, pp. 442-446, 2015.

M. R. Saidur, A. R. A. Aziz, and W. J. Basirun, “Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: A review,” Biosens. Bioelectron., vol. 90, pp. 125- 139, 2017.

J. Lee, M. Morita, K. Takemura, and E. Y. Park, “A multi-functional gold/iron-oxide nanoparticleCNT hybrid nanomaterial as virus DNA sensing platform,” Biosens. Bioelectron., vol. 102, pp. 425- 431, 2018.

C. Viphavakit, M. Komodromos, C. Themistos, W. S. Mohammed, K. Kalli, and B. M. A. Rahman, “Optimization of a horizontal slot waveguide biosensor to detect DNA hybridization,” Appl. Opt., vol. 54, no. 15, pp. 4881-4888, 2015.

S. A. Maier, “Plasmonics: Metal nanostructures for subwavelength photonic devices,” IEEE J. Sel. Top. quantum Electron., vol. 12, no. 6, pp. 1214- 1220, 2006.

M. Y. Azab, M. F. O. Hameed, and S. S. A. Obayya, “Multi-functional optical sensor based on plasmonic photonic liquid crystal fibers,” Opt. Quantum Electron., vol. 49, no. 2, 2017.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem., vol. 58, pp. 267- 297, 2007.

K. Q. Le, J. Bai, Q. M. Ngo, and P.-Y. Chen, “Fabrication and numerical characterization of infrared metamaterial absorbers for refractometric biosensors,” J. Electron. Mater., vol. 46, no. 1, pp. 668-676, 2017.

E. L. S. Wong and J. J. Gooding, “Charge transfer through DNA: a selective electrochemical DNA biosensor,” Anal. Chem., vol. 78, no. 7, pp. 2138- 2144, 2006.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol selfassembled monolayers,” J. Am. Chem. Soc., vol. 123, no. 7, pp. 1471-1482, 2001.

X. Li et al., “Sensitive label-free and compact biosensor based on concentric silicon-on-insulator microring resonators,” Appl. Opt., vol. 48, no. 25, pp. F90-F94, 2009.

S. S. A. Obayya, B. M. A. Rahman, and H. A. ElMikati, “New full-vectorial numerically efficient propagation algorithm based on the finite element method,” J. Light. Technol., vol. 18, no. 3, pp. 409- 415, 2000.

C. Multiphysics, “Introduction to COMSOL Multiphysics®,” COMSOL Multiphysics, Burlington, MA, accessed Feb., vol. 9, p. 2018, 1998.

A. M. Heikal, M. F. O. Hameed, and S. S. A. Obayya, “Improved trenched channel plasmonic waveguide,” J. Light. Technol., vol. 31, no. 13, pp. 2184-2191, 2013.

S. Obayya, M. F. O. Hameed, and N. F. F. Areed, Computational Liquid Crystal Photonics: Fundamentals, Modelling and Applications. John Wiley & Sons, 2016.

G. K. Celler and S. Cristoloveanu, “Frontiers of silicon-on-insulator,” J. Appl. Phys., vol. 93, no. 9, pp. 4955-4978, 2003

P. Steglich, C. Villringer, S. Pulwer, M. Casalboni, and S. Schrader, “Design optimization of siliconon-insulator slot-waveguides for electro-optical modulators and biosensors,” in Photoptics 2015, Springer, pp. 173-187, 2016.

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron., vol. 42, no. 10, pp. 1084-1090, 2006.

http://www.o-eland.com/passive/FiberArray/vgroove. htm

H.-L. Hsiao, et al., “Compact and passivealignment 4-channel× 2.5-Gbps optical interconnect modules based on silicon optical benches with 45 micro-reflectors,” Opt. Express, vol. 17, no. 26, pp. 24250-24260, 2009.

S.-B. Kang, Y. Chae, C. Park, and S. Lee, “Method for forming metal layer using atomic layer deposition.” Google Patents, Jan. 16, 2001

Downloads

Published

2020-07-01

How to Cite

[1]
Eman ELDamarawy, Ahmed M. Heikal, Salah S. A. Obayya, and Mohamed Farhat O. Hameed, “Modified V-Groove Slot Waveguide for DNA Hybridization Detection”, ACES Journal, vol. 35, no. 7, pp. 803–812, Jul. 2020.

Issue

Section

Articles