Ultra-Low Loss and Flat Dispersion Circular Porous Core Photonic Crystal Fiber for Terahertz Waveguiding
Keywords:
Bending losses, dispersion, photonic crystal fiber, porous core, terahertz waveguidingAbstract
A novel design of circular porous core photonic crystal fiber (CCPCF) is proposed and studied for Terahertz propagation with an ultra-low-loss. The effective index, effective mode area, dispersion, material and bending losses of the suggested design are studied using full vectorial finite element method. The CCPCF with high cladding air filling factor and porous core exhibits ultra-low material absorption loss of 0.022 cm-1 at a frequency of 1.0 THz. Further, very low bending losses of 2.2×10-18 cm-1 can be achieved for 1.0 cm bending radius at 1.0 THz with low confinement loss of 1.37×10-5 cm-1. Additionally, an ultra-flat low dispersion of 0.61 ± 0.035 ps/THz/cm can be obtained within the frequency range of 0.8-1.0 THz. Therefore, the reported CCPCF has a strong potential for transmission in the Terahertz regime.
Downloads
References
M. S. Islam, et al., "Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission," Optical Fiber Technology, vol. 34, pp. 6-11, 2017.
Q. Chen, Z. Jiang, G. X. Xu, and X.-C. Zhang, "Near-field terahertz imaging with a dynamic aperture," Optics Letters, vol. 25, no. 15, pp. 1122- 1124, 2000.
H. Thenmozhi, M. M. Rajan, V. Devika, D. Vigneswaran, and N. Ayyanar, "D-glucose sensor using photonic crystal fiber," Optik, vol. 145, pp. 489-494, 2017.
S. Chowdhury, S. Sen, K. Ahmed, and S. Asaduzzaman, "Design of highly sensible porous shaped photonic crystal fiber with strong confinement field for optical sensing," Optik, vol. 142, pp. 541-549, 2017.
M. S. Islam, J. Sultana, A. Dinovitser, K. Ahmed, B. W.-H. Ng, and D. Abbott, "Sensing of toxic chemicals using polarized photonic crystal fiber in the terahertz regime," Optics Communications, vol. 426, pp. 341-347, 2018.
M. S. Islam, J. Sultana, A. A. Rifat, A. Dinovitser, B. W.-H. Ng, and D. Abbott, "Terahertz sensing in a hollow core photonic crystal fiber," IEEE Sensors Journal, vol. 18, no. 10, pp. 4073-4080, 2018.
M. S. Islam, et al., "A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime," IEEE Sensors Journal, vol. 18, no. 2, pp. 575-582, 2017.
Z. Zhang, et al., "Research on terahertz photonic crystal fiber characteristics with high birefringence," Optik-International Journal for Light and Electron Optics, vol. 125, no. 1, pp. 154-158, 2014.
F. Poli, A. Cucinotta, and S. Selleri, Photonic Crystal Fibers: Properties and Applications. vol. 102. Springer Science & Business Media, 2007.
Z. Frederic, R. Gilles, and N. Andre, Foundations of Photonic Crystal Fibres. World Scientific, 2005.
M. Skorobogatiy and J. Yang, Fundamentals of Photonic Crystal Guiding. Cambridge University Press, 2009.
H. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, "Fabrication and characterization of porous-core honeycomb bandgap THz fibers," Optics Express, vol. 20, no. 28, pp. 29507-29517, 2012.
M. Uthman, B. M. A. Rahman, N. Kejalakshmy, A. Agrawal, and K. T. V. Grattan, "Design and characterization of low-loss porous-core photonic crystal fiber," IEEE Photonics Journal, vol. 4, no. 6, pp. 2315-2325, 2012.
J. Liang, L. Ren, N. Chen, and C. Zhou, "Broadband, low-loss, dispersion flattened porouscore photonic bandgap fiber for terahertz (THz)- wave propagation," Optics Commun-ications, vol. 295, pp. 257-261, 2013.
S. F. Kaijage, Z. Ouyang, and X. Jin, "Porous-core photonic crystal fiber for low loss terahertz wave guiding," IEEE Photonics Technology Letters, vol. 25, no. 15, pp. 1454-1457, Aug. 2013, doi: 10.1109/LPT.2013.2266412.
R. Islam, G. K. M. Hasanuzzaman, M. S. Habib, S. Rana, and M. A. G. Khan, "Low-loss rotated porous core hexagonal single-mode fiber in THz regime," Optical Fiber Technology, vol. 24, pp. 38- 43, 2015.
R. Islam and S. Rana, "Dispersion flattened, lowloss porous fiber for single-mode terahertz wave guidance," Optical Engineering, vol. 54, no. 5, p. 055102, 2015.
G. K. M. Hasanuzzaman, M. S. Habib, S. A. Razzak, M. A. Hossain, and Y. Namihira, "Low loss single-mode porous-core kagome photonic crystal fiber for THz wave guidance," Journal of Lightwave Technology, vol. 33, no. 19, pp. 4027- 4031, 2015.
M. S. Islam, S. Rana, M. R. Islam, M. Faisal, H. Rahman, and J. Sultana, "Porous core photonic crystal fibre for ultra-low material loss in THz regime," IET Communications, vol. 10, no. 16, pp. 2179-2183, 2016.
M. A. Habib and M. S. Anower, "A novel low loss porous-core photonic crystal fiber for terahertz wave transmission," in 2017 Inter-national Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 56-59, 2017.
M. S. Islam, J. Sultana, J. Atai, D. Abbott, S. Rana, and M. R. Islam, "Ultra low-loss hybrid core porous fiber for broadband applications," Applied Optics, vol. 56, no. 4, pp. 1232-1237, 2017.
COMSOL: Multiphysics Software for Optimizing Designs, COMSOL Multiphysics®. https://www. comsol.com/ (accessed Jan. 20, 2020).
S. Mei, et al., "Suspended graded-index porous core POF for ultra-flat near-zero dispersion terahertz transmission," Optical Fiber Technology, vol. 52, p. 101946, 2019.
M. S. Islam, et al., "A modified hexagonal photonic crystal fiber for terahertz applications," Optical Materials, vol. 79, pp. 336-339, 2018.
J. Sultana, et al., "Highly birefringent elliptical core photonic crystal fiber for terahertz application," Optics Communications, vol. 407, pp. 92-96, Jan. 2018, doi: 10.1016/j.optcom. 2017.09.020.
M. A. Habib and M. S. Anower, "Design and numerical analysis of highly birefringent single mode fiber in THz regime," Optical Fiber Technology, vol. 47, pp. 197-203, 2019.
J. Sultana, M. R. Islam, M. Faisal, K. M. A. Talha, and M. S. Islam, "Design and analysis of a Zeonex based diamond-shaped core kagome lattice photonic crystal fiber for T-ray wave transmission," Optical Fiber Technology, vol. 47, pp. 55-60, 2019.
M. S. Islam, J. Sultana, J. Atai, M. R. Islam, and D. Abbott, "Design and characterization of a low-loss, dispersion-flattened photonic crystal fiber for terahertz wave propagation," Optik, vol. 145, pp. 398-406, 2017.
J. J. Bai, J. N. Li, H. Zhang, H. Fang, and S. J. Chang, "A porous terahertz fiber with randomly distributed air holes," Applied Physics B, vol. 103, no. 2, pp. 381-386, 2011.
S. Liang, et al., "Influences of asymmetrical geometric structures on the birefringence of indexguiding photonic crystal fiber," Optik, vol. 180, pp. 973-983, 2019.
M. H. Muhammad, M. F. O. Hameed, A. M.Heikal, and S. S. Obayya, "Porous core photonic crystal fibre with metal-coated central hole for terahertz applications," IET Optoelectronics, vol. 9, no. 2, pp. 37-42, 2015.
S. S. A. Obayya, B. M. A. Rahman, and H. A. ElMikati, "New full-vectorial numerically efficient propagation algorithm based on the finite element method," Journal of Lightwave Technology, vol. 18, no. 3, p. 409, 2000.
S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, and H. A. El-Mikati, "Full vectorial finite-element-based imaginary distance beam propagation solution of complex modes in optical waveguides," J. Lightwave Technol., JLT, vol. 20, no. 6, p. 1054, June 2002.
A. W. Snyder and J. Love, Optical Waveguide Theory. Springer Science & Business Media, 2012.
S. F. Kaijage, et al., "Broadband dispersion compensating octagonal photonic crystal fiber for optical communication applications," Jpn. J. Appl. Phys., vol. 48, no. 5R, p. 052401, May 2009, doi: 10.1143/JJAP.48.052401.
Y. E. Monfared, A. R. Maleki Javan, and A. R. Monajati Kashani, "Confinement loss in hexagonal lattice photonic crystal fibers," Optik, vol. 124, no. 24, pp. 7049-7052, Dec. 2013, doi: 10.1016/j.ijleo. 2013.05.168.
A. Medjouri, L. M. Simohamed, O. Ziane, and A. Boudrioua, "Analysis of a new circular photonic crystal fiber with large mode area," Optik, vol. 126, no. 24, pp. 5718-5724, Dec. 2015, doi: 10.1016/ j.ijleo.2015.09.035.
M. D. Nielsen, N. A. Mortensen, M. Albertsen, J. R. Folkenberg, A. Bjarklev, and D. Bonacinni, "Predicting macrobending loss for large-mode area photonic crystal fibers," Opt. Express, OE, vol. 12, no. 8, pp. 1775-1779, Apr. 2004, doi: 10.1364/ OPEX.12.001775.
N. Chen, J. Liang, and L. Ren, "Highbirefringence, low-loss porous fiber for singlemode terahertz-wave guidance," Applied Optics, vol. 52, no. 21, pp. 5297-5302, 2013.
Y. Hou, F. Fan, Z.-W. Jiang, X.-H. Wang, and S.-J. Chang, "Highly birefringent polymer terahertz fiber with honeycomb cladding," Optik - International Journal for Light and Electron Optics, vol. 124, no. 17, pp. 3095-3098, Sep. 2013, doi: 10.1016/j.ijleo.2012.09.040.
X. Tang, et al., "Elliptical hollow fiber with inner silver coating for linearly polarized terahertz transmission," IEEE Photonics Technology Letters, vol. 25, no. 4, pp. 331-334, 2013.
D. M. Chow, S. R. Sandoghchi, and F. R. M. Adikan, "Fabrication of photonic crystal fibers," in 2012 IEEE 3rd International Conference on Photonics, pp. 227-230, Oct. 2012, doi: 10.1109/ ICP.2012.6379830.