A High-Efficient Wideband Transmitarray Antenna with Vias

Authors

  • Yongliang Zhang College of Transportation Inner Mongolia University, Hohhot, 010021, China , College of Electronic Information Engineering Inner Mongolia University, Hohhot, 010021, China
  • Xiuzhu Lv College of Electronic Information Engineering Inner Mongolia University, Hohhot, 010021, China
  • Lina Liu College of Electronic Information Engineering Inner Mongolia University, Hohhot, 010021, China
  • Yaxin Yi College of Electronic Information Engineering Inner Mongolia University, Hohhot, 010021, China
  • Zhao Wu College of Physics and Telecommunication Engineering Yulin Normal University, Yulin, 537006, China

Keywords:

High-efficient, transmitarray antenna, wideband

Abstract

This paper presents a high-efficient wideband transmitarray antenna with vias. The transmitarray element consists of two layers of Jerusalem cross patches and four metal vias. Two Jerusalem cross patches are printed on both sides of the substrate and are connected by four symmetrical metal vias. The metal vias can improve the coupling strength between the two patches. By adjusting the size of the patch and the position of the metal vias, the transmission phase of the element is greater than 360º. Then, an transmitarray antenna consists of the proposed elements is designed, manufactured, and measured. The experiment results show that the maximum gain of the transmitarray antenna is 25.7dB, and the corresponding aperture efficiency is 46.6%. The measured 1-dB gain bandwidth is 14.9% (8.7GHz- 10.1GHz).

Downloads

Download data is not yet available.

References

Q. Wang, Z. H. Shao, Y. Jian Cheng, and P. K. Li, “Broadband low-cost reflectarray using modified double-square loop loaded by spiral stubs,” IEEE Trans. Antennas Propag., vol. 63, no. 9, pp. 4224- 4229, Sep. 2015.

X. Xia and Q. wu, “Wideband millimeter-wave microstrip reflectarray using dual-resonance unit cells,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 4-7, 2017.

Q. Gao and J. Wang, “A multiresonant element for bandwidth enhancement of circularly polarized reflectarray antennas,” IEEE Antennas Wireless Propag. Lett., vol. 17, no. 5, pp. 727-730, May 2018.

G. Liu, H. Wang, J. Jiang, F. Xue, and M. Yi, “A high-efficiency transmitarray antenna using double split ring slot elements,” in IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 1415- 1418, 2015.

C. G. M. Ryan, M. R. Chaharmir, J. Shaker, J. R. Bray, Y. M. M. Antar, and A. Ittipiboon, “A wideband transmitarray using dual-resonant double square rings,” in IEEE Transactions on Antennas and Propagation, vol. 58, no. 5, pp. 1486-1493, May 2010.

A. H. Abdelrahman, A. Z. Elsherbeni, and F. Yang, “High-gain and broadband transmitarray antenna using triple-layer spiral dipole elements,” in IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1288-1291, 2014.

C. Tian, Y. Jiao, G. Zhao, and H. Wang, “A wideband transmitarray using triple-layer elements combined with cross slots and double square rings,” in IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 1561-1564, 2017.

Q. Luo, S. Gao, M. Sobhy, and X. Yang, “Wideband transmitarray with reduced profile,” in IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 3, pp. 450-453, Mar. 2018.

B. Rahmati and H. R. Hassani, “High-efficient wideband slot transmitarray antenna,” IEEE Trans. Antennas Propag., vol. 63, no. 11, pp. 5149-5155, Nov. 2015.

W. An, S. H. Xu, F. Yang, and M. K. Li, “A double-layer transmitarray antenna using Malta crosses with vias,” IEEE Trans. Antennas Propag., vol. 64, no. 3, pp. 1120-1125, Mar. 2016.

K. Pham, et al., “Design of wideband dual linearly polarized transmitarray antennas,” IEEE Trans. Antennas Propag., vol. 64, no. 5, pp. 2022-2026, May 2016.

J. F. Yu, L. Chen, J. Yang, and X.W. Shi, “Design of a transmitarray using split diagonal cross elements with limited phase range,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 1514-1517, 2016.

F. Liu, J. Guo, L. Zhao, G. Huang, Y. Li, and Y. Yin, “Dual-band metasurface-based decoupling method for two closely packed dual-band antennas,” in IEEE Transactions on Antennas and Propagation.

J. Guo, F. Liu, L. Zhao, Y. Yin, G. Huang, and Y. Li, “Meta-surface antenna array decoupling designs for two linear polarized antennas coupled in H-plane and E-plane,” in IEEE Access, vol. 7, pp. 100442-100452, 2019.

S. Luo, Y. Li, Y. Xia, and L. Zhang, “A low mutual coupling antenna array with gain enhancement using metamaterial loading and neutralization line structure,” in Applied Computational Electromagnetics Society Journal, vol. 34, no. 3, pp. 411- 418, 2019.

K. Yu, Y. Li, and X. Liu, “Mutual coupling reduction of a MIMO antenna array using 3-D novel meta-material structures,” in Applied Computational Electromagnetics Society Journal, vol. 33, pp. 758-763, 2018.

T. Jiang, T. Jiao, and Y. Li, “A low mutual coupling MIMO antenna using periodic multilayered electromagnetic band gap structures,” in Applied Computational Electromagnetics Society Journal, vol. 33, pp. 305-311, 2018.

X. Yi, T. Su, B. Wu, J. Chen, L. Yang, and X. Li, “A double-layer highly efficient and wideband transmitarray antenna,” in IEEE Access, vol. 7, pp. 23285-23290, 2019.

A. Clemente and L. Dussopt, “Wideabnd 400- element eletronically reconfigurable trasmitarray in X band,” IEEE Trans. Antennas Propag., vol. 61, no. 10, pp. 5017-5026, Nov. 2013.

X. Zhong, L. Chen, Y. Shi, and X. Shi, “Design of multiple-polarization transmitarray antenna using rectangle ring slot elements,” in IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1803-1806, 2016.

C. Tian, Y. Jiao, and G. Zhao, “Circularly polarized transmitarray antenna using low-profile dual-linearly polarized elements,” in IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 465- 468, 2017.

Downloads

Published

2020-02-01

How to Cite

[1]
Yongliang Zhang, Xiuzhu Lv, Lina Liu, Yaxin Yi, and Zhao Wu, “A High-Efficient Wideband Transmitarray Antenna with Vias”, ACES Journal, vol. 35, no. 2, pp. 210–217, Feb. 2020.

Issue

Section

Articles