Wearable Textile Fabric Based 3D Metamaterials Absorber in X-Band

Authors

  • E. Delihasanlar Department of Electrical-Electronics Engineering Karabuk University, Karabuk, 78050, Turkey
  • A. H. Yuzer Department of Electrical-Electronics Engineering Karabuk University, Karabuk, 78050, Turkey

Keywords:

3D metamaterial, cloaking, plain weave, textile, wearable absorber, weft-knitted

Abstract

In this paper, a new wearable (flexible) textile fabric-based 3D metamaterials absorber (MMA) structure is proposed. The proposed MMA was created from three layers; weft-knitted fabric, silicone, and plain weave fabric and then, it was simulated in Computer Simulation Technology (CST). It was obtained maximum absorption power (99.66%) at 9.38 GHz, and the average absorption power of 81-95% was obtained in the frequency range of 8 to 12 GHz depending on the incident angle in the simulation. The effect of the wearable textile structure on absorption was investigated. When compared with other materials, it can be said that the proposed MMA is broadband, incident angle independent, TE and TM polarization-independent, flexible, breathable, wearable, ease of fabrication, practical, low weight, and cost advantage. With this designed the textile fabric-based MMA, it can be obtained both low reflection coefficients and low transmission coefficients at broadband X-band frequencies. This provides a good solution for the cloaking of radar systems.

Downloads

Download data is not yet available.

References

B. Greinke, M. Candotti, A. Alomainy, and C. Parini, “Parameters extraction of threedimensional structures for graded textile cloaking materials,” 2013 Loughbrgh. Antennas Propag. Conf. LAPC 2013, pp. 84-87, Nov. 2013.

T. Zhang, et al., “Tunable plasmon induced transparency in a metallodielectric grating coupled with graphene metamaterials,” J. Light. Technol., vol. 35, no. 23, pp. 5142-5149, 2017.

M. Esen, I. Ilhan, M. Karaaslan, E. Unal, F. Dincer, and C. Sabah, “Electromagnetic absorbance properties of a textile material coated using filtered arc-physical vapor deposition method,” J. Ind. Text., vol. 45, no. 2, pp. 298-309, 2015.

Y. Tao, E. Yang, and G. Wang, “Left-handed metamaterial lens applicator with built-in cooling feature for superficial tumor hyperthermia,” Appl.Comput. Electromagn. Soc. J., vol. 32, no. 11, pp. 1029-1034, 2017.

M. Bakır, M. Karaaslan, F. Karadag, S. Dalgac, E. Ünal, and O. Akgöl, “Metamaterial sensor for transformer oil, and microfluidics,” Appl. Comput. Electromagn. Soc. J., vol. 34, no. 5, pp. 799-806, 2019.

H. Wakatsuchi, D. F. Sievenpiper, and C. Christopoulos, “Designing flexible and versatile metamaterial absorbers,” IEEE Electromagn. Compat. Mag., vol. 5, no. 2, pp. 76-82, 2016.

X. Lu, J. Chen, Y. Huang, Z. Wu, and A. Zhang, “Design of ultra-wideband and transparent absorber based on resistive films,” Appl. Comput. Electromagn. Soc. J., vol. 34, no. 5, pp. 765-770, 2019.

Y. Ozturk and A. E. Yilmaz, “Multiband and perfect absorber with circular fishnet metamaterial and its variations,” Appl. Comput. Electromagn. Soc. J., vol. 31, no. 12, pp. 1445-1451, 2016.

P. Zhou, Q. Huang, L. Ji, and X. Shi, “Design of a thin broadband metamaterial absorber based on resistance frequency selective surface,” Appl. Comput. Electromagn. Soc. J., vol. 37, no. 10, pp. 1494-1499, 2019.

S. I. Rosaline and S. Raghavan, “Metamaterialinspired split ring monopole antenna for WLAN applications,” Appl. Comput. Electromagn. Soc. J., vol. 33, no. 2, pp. 188-191, 2018.

K. Yu, Y. Li, and X. Liu, “Mutual coupling reduction of a MIMO antenna array using 3-D novel meta-material structures,” Appl. Comput. Electromagn. Soc. J., vol. 33, no. 7, pp. 758-763, 2018.

M. F. Finch and B. A. Lail, “A subwavelength perfect absorbing metamaterial patch array coupled with a molecular resonance,” Appl. Comput. Electromagn. Soc. J., vol. 33, no. 2, pp. 196-199, 2018.

M. Valayil and K. Chamberlin, “Enhancement of parameters of slotted waveguide antennas using metamaterials,” Appl. Comput. Electromagn. Soc. J., vol. 34, no. 2, pp. 272-279, 2019.

S. Luo, Y. Li, Y. Xia, and L. Zhang, “A low mutual coupling antenna array with gain enhancement using metamaterial loading and neutralization line structure,” Appl. Comput. Electromagn. Soc. J., vol. 34, no. 3, pp. 411-418, 2019.

S. Luo, Y. Li, Y. Xia, G. Yang, L. Sun, and L. Zhao, “Mutual coupling reduction of a dual-band antenna array using dual-frequency metamaterial structure,” Appl. Comput. Electromagn. Soc. J., vol. 34, no. 3, pp. 403-410, 2019.

H. R. Vani, M. A. Goutham, and Paramesha, “Gain enhancement of microstrip patch antenna using metamaterial superstrate,” Appl. Comput. Electromagn. Soc. J., vol. 34, no. 5, pp. 823-826, 2019.

A. Mersani, O. Lotfi, and J.-M. Ribero, “Design of a textile antenna with artificial magnetic conductor for wearable applications,” Microw. Opt. Technol. Lett., vol. 60, no. 6, pp. 1343-1349, Jun. 2018.

S. Can and A. E. Yilmaz, “Radar cross section reduction of a plate with textile-based single negative metamaterial,” 2016 10th Eur. Conf. Antennas Propagation, EuCAP 2016, pp. 1-4, 2016.

M. A. A. Abessolo, Y. Diallo, A. Jaoujal, A. E. Moussaoui, and N. Aknin, “Stop-band filter using a new metamaterial complementary split triangle resonators (CSTRs),” Appl. Comput. Electromagn. Soc. J., vol. 28, no. 4, pp. 353-358, 2013.

M. E. Jalil, N. A. Samsuri, M. K. A. Rahim, and R. Dewan, “Compact chipless RFID metamaterial based structure using textile material,” 2015 International Symposium on Antennas and Propagation (ISAP), pp. 5-8, 2015.

S. Lai, Y. Wu, X. Zhu, W. Gu, and W. Wu, “An optically transparent ultrabroadband microwave absorber,” IEEE Photonics J., vol. 9, no. 6, pp. 1- 10, Dec. 2017.

M. Ghebrebrhan, et al., “Textile frequency selective surface,” IEEE Microw. Wirel. Components Lett., vol. 27, no. 11, pp. 989-991, 2017.

Y. Zhang, J. Duan, B. Zhang, W. Zhang, and W. Wang, “A flexible metamaterial absorber with four bands and two resonators,” J. Alloys Compd., vol. 705, pp. 262-268, 2017.

K. Ling, K. Kim, and S. Lim, “Flexible liquid metal-filled metamaterial absorber on polydimethylsiloxane (PDMS),” Opt. Express, vol. 23, no. 16, pp. 21375, 2015.

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys., vol. 118, no. 8, 2015.

H. K. Kim, K. Ling, K. Kim, and S. Lim, “Flexible inkjet-printed metamaterial absorber for coating a cylindrical object,” Opt. Express, vol. 23, no. 5, pp. 5898, 2015.

H.-M. Lee, “A broadband flexible metamaterial absorber based on double resonance,” Prog. Electromagn. Res. Lett., vol. 46, pp. 73-78, Mar. 2014.

M. Nasr, et al., “Narrowband metamaterial absorber for terahertz secure labeling,” J. Infrared, Millimeter, Terahertz Waves, vol. 38, no. 9, pp. 1120-1129, 2017.

X. Kong, J. Xu, J. jun Mo, and S. Liu, “Broadband and conformal metamaterial absorber,” Front. Optoelectron., vol. 10, no. 2, pp. 124-131, 2017.

X. Yan, L.-J. Liang, X. Ding, and J.-Q. Yao, “Solid analyte and aqueous solutions sensing based on a flexible terahertz dual-band metamaterial absorber,” Opt. Eng., vol. 56, no. 2, pp. 027104, 2017.

J. H. Kim, et al., “Investigation of robust flexible conformal THz perfect metamaterial absorber,” Appl. Phys. A Mater. Sci. Process., vol. 122, no. 4, pp. 1-7, 2016.

Y. He, et al., “Optically-controlled metamaterial absorber based on hybrid structure,” Opt. Commun., vol. 356, pp. 595-598, 2015.

M. Michalak, R. Brazis, V. Kazakevicius, J. Bilska, and I. Krucinska, “Novel approach to textile design for barriers against electromagnetic radiation,” Int. J. Mater. Prod. Technol., vol. 36, no. 1/2/3/4, pp. 166, 2010.

P. Pa, M. S. Mirotznik, R. McCauley, S. Yarlagadda, and K. Duncan, “Integrating metamaterials within a structural composite using additive manufacturing methods,” IEEE Antennas Propag. Soc. AP-S Int. Symp., pp. 0-1, 2012.

S. Can, A. E. Yilmaz, and E. Karakaya, “Conformai dual-band frequency selective surface on textile: design, prototyping and expriment,” 2017 Usn. Radio Sci. Meet. (Joint with AP-S Symp. Usn. 2017), pp. 17-18, 2017.

C. Huppé, et al., “Woven metamaterials with an electromagnetic phase-advance for selective shielding,” IOP Conf. Ser. Mater. Sci. Eng., vol. 254, no. 3, 2017.

D. Lee and S. Lim, “Wearable metamaterial absorber using screen printed chanel logo,” Int. Symp. Antennas Propag., pp. 928-929, 2016.

J. Tak and J. Choi, “A wearable metamaterial microwave absorber,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 784-787, 2017.

G. A. Cavalcante, A. G. D’Assunção, and A. G. D’Assunção, “An iterative full-wave method for designing bandstop frequency selective surfaces on textile substrates,” Microw. Opt. Technol. Lett., vol. 56, no. 2, pp. 383-388, Feb. 2014.

H. İbili, B. Karaosmanoğlu, and Ö. Ergül, “Demonstration of negative refractive index with low-cost inkjet-printed microwave metamaterials,” Microw. Opt. Technol. Lett., vol. 60, no. 1, pp. 187- 191, 2018.

R. Abdulla, E. Delihasanlar, F. G. Kizilcay Abdulla, and A. H. Yuzer, “Electromagnetic shielding characterization of conductive knitted fabrics,” Prog. Electromagn. Res. M, vol. 56, pp. 33-41, Jan. 2017.

S. J. Orfanidis, Electromagnetic Waves and Antennas, Rutgers University New Brunswick, NJ, 2002.

T. S. Nutting and G. A. V. Leaf, “5-A generalized geometry of weft-knitted fabrics,” J. Text. Inst. Trans., vol. 55, no. 1, pp. T45-T53, Jan. 1964.

T. M. McBride and J. Chen, “Unit-cell geometry in plain-weave fabrics during shear deformations,” Compos. Sci. Technol., vol. 57, no. 3, pp. 345-351, 1997.

Downloads

Published

2020-02-01

How to Cite

[1]
E. Delihasanlar and A. H. Yuzer, “Wearable Textile Fabric Based 3D Metamaterials Absorber in X-Band”, ACES Journal, vol. 35, no. 2, pp. 230–236, Feb. 2020.

Issue

Section

Articles