Geometrical Dependence in Fixtures for 2D Multipole Micromagnets Magnetization Pattering
Keywords:
Magnetic polarization patterning, magnetizing fixtures, micro-magnetsAbstract
Different approaches have been used for micro-magnets multipole magnetization like fixed micro-fixtures, thermomagnetic patterning or laser machining. With previous techniques, inversion of magnetic polarizations is only partially achieved. In this work, a preliminary design of the fixtures for micromagnets with 10, 100 and 1000 μm thickness is done. The magnetizing field dependence in respect to the geometrical parameter of the fixture is analyzed. Maps of the required current permit to pre-select an adequate pulse power source. An experimental test has been done in order to validate designs. Design recommendations to optimize the magnetizing field and to minimize the current, thus the heat, are given.
Downloads
References
E. Diez-Jimenez, J. L. Perez-Diaz, and J. C. Garcia-Prada, “Local model for magnet–superconductor mechanical interaction: Experimental verification,” J. Appl. Phys., vol. 109, no. 6, pp. 063901-063901-5, 2011.
E. Diez-Jimenez, “Design and analysis of a nonhysteretic passive magnetic linear bearing for cryogenic environments,” Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 2014.
S. Wu, S. Zuo, X. Wu, F. Lin, and J. Shen, “Magnet modification to reduce pulsating torque for axial flux permanent magnet synchronous machines,” Appl. Comput. Electromagn. Soc. J., vol. 31, no. 3, pp. 294-303, 2016.
B. Rezaeealam and F. Rezaee-Alam, “Optimization of permanent magnet synchronous motors using conformal mappings,” Appl. Comput. Electromagn. Soc. J., vol. 32, no. 10, pp. 915-923, 2017.
R. Rizzo, A. Musolino, F. Bucchi, P. Forte, and F. Frendo, “A multi-gap magnetorheological clutch with permanent magnet,” Smart Mater. Struct., vol. 24, no. 7, 2015.
R. Rizzo, “An innovative multi-gap clutch based on magneto-rheological fluids and electrodynamic effects: Magnetic design and experimental characterization,” Smart Mater. Struct., vol. 26, no. 1, 2017.
R. Rizzo, A. Musolino, and H. C. Lai, “An electrodynamic/magnetorheological clutch powered by permanent magnets,” IEEE Trans. Magn., vol. 53, no. 2, pp. 1-7, Feb. 2017.
E. Diez-Jimenez, A. Musolino, M. Raugi, R. Rizzo, and L. Sani, “A magneto-rheological brake excited by permanent magnets,” Appl. Comput. Electromagn. Soc. J., vol. 34, no. 1, pp. 186-191, 2019.
M. Muñoz-Martínez, E. Diez-Jimenez, M. J. Gómez-García, R. Rizzo, and A. Musolino, “Torque and bearing reaction forces simulation of micro-magnetic gears,” Appl. Comput. Electromagn. Soc. J., vol. 3, 2019.
E. Diez-Jimenez, R. Sanchez-Montero, and M. Martinez-Muñoz, “Towards miniaturization of magnetic gears: Torque performance assessment,” Micromachines, vol. 9, no. 1, p. 16, Dec. 2017.
J. L. Perez-Diaz, et al., “A novel high temperature eddy current damper with enhanced performance by means of impedance matching,” Smart Mater. Struct., vol. 28, no. 2, p. 025034, 2019.
S. Barmada, A. Musolino, and R. Rizzo, “Equivalent network approach for the simulation of MEMS devices,” Appl. Comput. Electromagn. Soc. J., vol. 21, no. 1, pp. 16-25, 2006.
M.-F. Hsieh, Y.-M. Lien, and D. G. Dorrell, “Postassembly magnetization of rare-earth fractionalslot surface permanent-magnet machines using a two-shot method,” IEEE Trans. Ind. Appl., vol. 47, no. 6, pp. 2478-2486, Nov. 2011.
E. Diez-Jimenez, A. Musolino, R. Rizzo, and E. Tripodi, “Analysis of the static and dynamic behavior of a non hysteretic superconductive passive magnetic linear bearing by using an electromagnetic integral formulation,” Prog. Electromagn. Res. M, vol. 50, pp. 183-193, 2016.
Y. N. Zhilichev, “Precise multipole magnetization of disc magnet for sensor application,” IEEE Trans. Magn., vol. 39, no. 5, pp. 3301-3303, Sep. 2003.
E. Diez-Jimenez, et al., “Magnetic and morphological characterization of Nd2Fe14B magnets with different quality grades at low temperature 5– 300 K,” J. Magn. Magn. Mater., vol. 451, pp. 549- 553, Apr. 2018.
E. Diez-Jimenez, J. L. Perez-Diaz, F. Canepa, and C. Ferdeghini, “Invariance of the magnetization axis under spin reorientation transitions in polycrystalline magnets of Nd2Fe14B,” J. Appl. Phys., vol. 112, no. 6, p. 063918, 2012.
J. Töpfer, B. Pawlowski, H. Beer, K. Plötner, P. Hofmann, and J. Herrfurth, “Multi-pole magnetization of NdFeB magnets for magnetic micro-actuators and its characterization with a magnetic field mapping device,” J. Magn. Magn. Mater., vol. 270, no. 1-2, pp. 124-129, 2004.
J. Töpfer and V. Christopher, “Multi-pole magnetization of NdFeB sintered magnets and thick films for magnetic micro-actuators,” Sensors Actuators, A Phys., vol. 113, no. 2, pp. 257-263, 2004.
A. Garraud, et al., “Microscale magnetic patterning of hard magnetic films using microfabricated magnetizing masks,” Proc. IEEE Int. Conf. Micro Electro Mech. Syst., pp. 520-523, 2014.
F. Dumas-Bouchiat, et al., “Thermomagnetically patterned micromagnets,” Appl. Phys. Lett., vol. 96, no. 10, 2010.
A. Garraud, N. M. Dempsey, and D. P. Arnold, “Microscale magnetic patterning of hard magnetic films using microfabricated magnetizing masks,” in Proceedings of the IEEE International Conference on MEMS, pp. 520-523, 2014.
L. Fullerton, “System and Method for producing Magnetic Structures,” 2015.
“Catalog of Polymagnets (R),” 2018. [Online]. Available: http://www.polymagnet.com/
“Ansoft Ansys Maxwell v15 - Help assistant,” 2018.
W. H. Hayt, Engineering Electromagnetics. 1989.