24 GHz Graphene Patch Antenna Array

Authors

  • Varindra Kumar Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK

Keywords:

24 GHz, antenna, array, graphene, patch

Abstract

The discovery of Graphene has created new applications for the next generation electronics due to its electrical characteristic. A compact patch antenna with graphene as conducting media has been designed for wearable, medical and consumer electronics application at 24 GHz. The patch has a dimension of 5×5 mm and is designed over 0.254 mm thick roger material. The antenna has been combined to make it an array form for increasing its gain while various antenna parameters have been obtained for its comparison with copper conductive patch. The ground patch is made of Perfect Electric Conductor (PEC) in both cases. Various parametric results show that graphene patch similar to copper patch provides a comparable return loss and VSWR although there has been observed some decrease in its gain and efficiency and an increase in its bandwidth. Thus, graphene can be a good alternative to copper conductive patch within higher GHz and THz frequency range.

Downloads

Download data is not yet available.

References

G. Casu, C. Moraru, and A. Kovacs, “Design and implementation of microstrip patch antenna array,” 2014 10th International Conference on Communications (COMM), Bucharest, pp. 1-4, Doi: 10.1109/ ICComm.2014.6866738, 2014.

N. Ghassemi and K. Wu, “High-efficient patch antenna array for E-band gigabyte point-to-point wireless services,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 1261-1264, Doi: 10.1109/LAWP.2012.2224087, 2012.

Y. J. Cheng, Y. X. Guo, and Z. Q. Liu, “W-Band large-scale high-gain planar integrated antenna array,” IEEE Transactions on Antennas and Propagation, vol. 62, pp. 3370-3373, Doi: 10.1109/ TAP.2014.2310483, 2014.

J. Kim II, B. M. Lee, and Y. J. Yoon, “Wideband printed dipole antenna for multiple wireless services,” Proceedings RAWCON 2001, 2001 IEEE Radio and Wireless Conference (Cat.No.01EX514), Waltham, MA, pp. 153-156, Doi: 10.1109/RAWCON. 2001.947575, 2001.

J. D. Kraus, R. J. Marhefka, and A. S. Khan, Antennas for All Applications. Tata McGraw-Hill, 3 rd ed., New Delhi, ISBN-10: 0-07-060185-2, 2006.

S. N. H. Sa’don, M. R. Kamarudin, F. Ahmad, M. Jusoh, and H. A. Majid, “Graphene array antenna for 5G applications,” Appl. Phys. Mater. Sci. Process, vol. 123, pp. 1-4, Doi: 10.1007/s00339- 016-0749-5, 2017.

M. Donelli and G. Oliveri, “Design of tunable graphene-based antenna arrays for microwave applications,” Proc. IEEE APSURSI, Memphis, TN, USA, pp. 6-12. Doi: 10.1109/aps.2014.6904782, 2014.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Mater., vol. 6, pp. 183-191, Doi: 10.1038/nmat1849, 2007.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, pp. 666-669, Doi: 10.1126/science.1102896, 2004.

R. Song, Q. Wang, B. Mao, Z. Wang, D. Tang, B. Zhang, J. Zhang, C. Liu, D. He, Z. Wu, and S. Mu, “Flexible radio films with high conductivity for radio frequency antennas,” Carbon, vol. 130, pp. 164-169, Doi: 10.1016/j.carbon.2018.01.019, 2018.

J. H. Warner, F. Schaffel, M. Rummeli, and A. Bachmatiuk, Graphene Fundamentals and Emergent Applications. Elsevier, Oxford, 2013.

M. Bozzi, L. Pierantoni, and S. Bellucci, “Applications of graphene at microwave frequencies,” Radioengineering, vol. 24, pp. 661-669, Doi: 10.13164/ re.2015.0661, 2015.

Q. Zheng and J.-K. Kim, Graphene for Transparent Conductors: Synthesis, Properties and Applications, Springer-Verlag, New York, Doi: 10.1007/978-1-4939-2769-2, 2015.

Y. Wang, S. W. Tong, X. F. Xu, B. Ozyilmaz, and K. P. Loh, “Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells,” Adv. Mater., vol. 23, pp. 1514-1518, Doi: 10.1002/adma.201003673, 2011.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science, vol. 320, pp. 1308, Doi: 10.1126/science.1156965, 2008.

C. A. Balanis, Antenna Theory: Analysis and Design. John Wiley & Sons, New Jersey, USA, 2005.

T. Stauber, N. M. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Physical Review B, vol. 78, pp. 085432, Doi: 10.1103/PhysRevB.78.085432, 2008.

S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Physical Review Letters, vol. 99, pp. 016803, Doi: 10.1103/ PhysRevLett.99.016803, 2007.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys., vol. 103, pp. 064302, Doi: 10.1063/1.2891452, 2008.

CST Microwave Studio, Computer Simulation Technology, Framingham, MA [online]. http://www. cst.com, 2019.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol., vol. 5, pp. 574-578, Doi: 10.1038/nnano.2010.132, 2010.

Y. Huang and K. Boyle, Antenna from Theory to Practice. 1st ed., Wiley & Sons Ltd., New Delhi, ISBN: 978-0-470-51028-5, 2006.

J. R. James, P. S. Hall, and C. Wood, Microstrip Antenna Theory and Design. Peter Peregrinus Ltd, London, ISBN: 0-86341-088, 1986.

R. J. Mailloux, Phased Array Antenna Handbook. 2 nd ed., Artech house, Norwood, MA, ISBN: 1- 58053-689-1, 2005.

Downloads

Published

2019-05-01

How to Cite

[1]
Varindra Kumar, “24 GHz Graphene Patch Antenna Array”, ACES Journal, vol. 34, no. 05, pp. 676–683, May 2019.

Issue

Section

Articles