Torque and Bearing Reaction Forces Simulation of Micro-Magnetic Gears

Authors

  • M. Muñoz-Martínez Mechanical Engineering Area, Universidad de Alcalá, Spain
  • E. Diez-Jimenez Mechanical Engineering Area, Universidad de Alcalá, Spain
  • M. J. Gómez-García Mechanical Engineering Department, Universidad Carlos III de Madrid, Spain
  • R. Rizzo Department of Energy and Systems Engineering, University of Pisa, Largo Lucio Lazzarino, 56122, Pisa, Italy
  • A. Musolino Department of Energy and Systems Engineering, University of Pisa, Largo Lucio Lazzarino, 56122, Pisa, Italy

Keywords:

Axial flux rotary machines, FEM simulation, magnetic gear, microgears, micromagnets

Abstract

Specific torque and bearing reaction forces are simulated for two models of axial flux magnetic gears. The models cover simulation in two scale ranges: hundreds of microns and tenths of microns. The simulations presented are performed considering currently available magnetic properties in the microscale and potentially achievable ones. Specific torque of the models is between 2.76 up to 8.24 Nm/kg. This range is large enough to overpass conventional toothed microgear specific torque. This means that micro magnetic gears can not only provide conversion of speed and torque without friction but also to be more compact.

Downloads

Download data is not yet available.

References

G. Subhash, A. D. Corwin, and M. P. de Boer, “Evolution of wear characteristics and frictional behavior in MEMS devices,” Tribol. Lett., vol. 41, no. 1, pp. 177-189, Jan. 2011.

M. Kawano, K. Sahrani, S. Mori, T.; Kuroda, and M. Tentzeris, “Numerical modeling of reconfigurable RF MEMS-based structures involving the combination of electrical and mechanical force,” Appl. Comput. Electromagn. Soc. J., vol. 21, no. 1, pp. 1-8, 2006.

R. Barmada, S. Musolino, and A. Rizzo, “Equivalent network approach for the simulation of MEMS devices,” Appl. Comput. Electromagn. Soc. J., vol. 21, no. 1, pp. 16-25, 2006.

J. Iannacci, “Reliability of MEMS: A perspective on failure mechanisms, improvement solutions and best practices at development level,” Displays, vol. 37, pp. 62-71, 2015.

H.-W. Wu, Y.-Y. Chen, and J.-H. Horng, “The analysis of three-body contact temperature under the different third particle size, density, and value of friction,” Micromachines, vol. 8, no. 10, p. 302, Oct. 2017.

O. Penkov, M. Khadem, A. Nieto, T.-H. Kim, and D.-E. Kim, “Design and construction of a microtribotester for precise in-situ wear measurements,” Micromachines, vol. 8, no. 4, p. 103, Mar. 2017.

M. Tauviqirrahman, R. Ismail, J. Jamari, and D. J. Schipper, “Friction reduction in lubricated-MEMS with complex slip surface pattern,” Procedia Eng., vol. 68, pp. 331-337, 2013.

R. W. Carpick, E. E. Flater, J. R. VanLangendon, and M. P. De Boer, “Friction in MEMS: From single to multiple asperity contact,” Proc. SEM VIII Int. Congr. Expo. Exp. Appl. Mech., p. 282, 2002.

F. Jorgensen and T. Andersen, “Two dimmensional model of a permanent magnet spur gear,” Conf. Rec. 2005 IEEE Ind. Appl. Conf., vol. 1-4, pp. 261- 265, 2005.

C.-C. Huang, M.-C. Tsai, D. G. Dorrell, and B.-J. Lin, “Development of a magnetic planetary gearbox,” IEEE Trans. Magn., vol. 44, no. 3, pp. 403-412, Mar. 2008.

B. Majidi and J. Milimonfared, “Design and analysis of an interior continuous magnetic gear box using finite element method,” Appl. Comput. Electromagn. Soc. J., vol. 30, no. 1, pp. 109-116, 2015.

N. Niguchi and K. Hirata, “Cogging torque analysis of magnetic gear,” IEEE Trans. Ind. Electron., vol. 59, no. 5, pp. 2189-2197, 2012.

R. C. Holehouse, K. Atallah, and J. Wang, “A linear magnetic gear,” Proc. - 2012 20th Int. Conf. Electr. Mach. ICEM 2012, pp. 563-569, 2012.

Y. D. Yao, D. R. Huang, C. M. Lee, S. J. Wang, D. Y. Chiang, and T. F. Ying, “Magnetic coupling studies between radial magnetic gears,” IEEE Trans. Magn., vol. 33, no. 5, pp. 4236-4238, 1997.

J. Zhang, L. L. Huang, “Stability analysis for a flywheel supported on magnetic bearings with delayed feedback control,” Appl. Comput. Electromagn. Soc. J., vol. 32, no. 8, pp. 642-649, 2017.

R. Muscia, “Magneto-mechanical model of passive magnetic axial bearings versus the eccentricity error - Part I: Physical mathematical model,” Appl. Comput. Electromagn. Soc. J., vol. 32, no. 8, pp. 670-677, 2017.

E. Diez-Jimenez, A. Musolino, R. Rizzo, and E. Tripodi, “Analysis of the static and dynamic behavior of a non hysteretic superconductive passive magnetic linear bearing by using an electromagnetic integral formulation,” Prog. Electromagn. Res. M, vol. 50, pp. 183-193, 2016.

E. Diez-Jimenez, J.-L. Perez-Diaz, and J. C. Garcia-Prada, “Local model for magnet–superconductor mechanical interaction: experimental verification,” J. Appl. Phys., vol. 109, no. 6, pp. 063901-063901-5, 2011.

S. A. Afsari, H. Heydari, and B. Dianati, “Cogging torque mitigation in axial flux magnetic gear system based on skew effects using an improved quasi 3-D analytical method,” IEEE Trans. Magn., vol. 51, no. 9, pp. 1-11, 2015.

C. Cristache, E. Diez-Jimenez, I. Valiente-Blanco, J. Sanchez-Garcia-Casarrubios, and J. L. PerezDiaz, “Aeronautical magnetic torque limiter for passive protection against overloads,” Machines, vol. 4, no. 3, 2016.

E. Diez-Jimenez, “Design and analysis of a non-hysteretic passive magnetic linear bearing for cryogenic environments,” Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 2014.

J. Esnoz-Larraya, et al., “OPTIMAGDTRIVE: High-performance magnetic gears development for space applications,” in ESMATS, 2017.

J. L. Perez-Diaz and E. Diez-Jimenez, “Performance of magnetic-superconductor non-contact harmonic drive for cryogenic space applications,” Machines, vol. 3, no. 3, pp. 138-156, 2015.

P. In, “Comparison of magnetic-geared permanent magnet machines,” Prog. Electromagn. Res., vol. 133, no. 2013, pp. 177-198, 2013.

E. Diez-Jimenez, R. Sanchez-Montero, and M. Martinez-Muñoz, “Towards miniaturization of magnetic gears: Torque performance assessment,” Micromachines, vol. 9, no. 1, p. 16, Dec. 2017.

M. L. Chan, et al., “Design and characterization of MEMS micromotor supported on low friction liquid bearing,” Sensors Actuators, A Phys., vol. 177, pp. 1-9, 2012.

Y. Su, H. Wang, G. Ding, F. Cui, W. Zhang, and W. Chen, “Electroplated hard magnetic material and its application in microelectromechanical systems,” IEEE Trans. Magn., vol. 41, no. 12, pp. 4380-4383, 2005.

N. M. Dempsey, A. Walther, F. May, D. Givord, K. Khlopkov, and O. Gutfleisch, “High performance hard magnetic NdFeB thick films for integration into micro-electro-mechanical systems,” Appl. Phys. Lett., vol. 90, no. 9, 2007.

D. P. Arnold and N. Wang, “Permanent magnets for MEMS,” J. Microelectromechanical Syst., vol. 18, no. 6, pp. 1255-1266, 2009.

E. Diez-Jimenez, J. Esnoz-Larraya, I. ValienteBlanco, and C. Cristache, “Lubrication free magnetic harmonic drives for harsh space environments,” in Space Robotics Symposium, 2015.

“Ansoft Ansys Maxwell v15 - Help assistant.” 2018.

Downloads

Published

2019-04-01

How to Cite

[1]
M. Muñoz-Martínez, E. Diez-Jimenez, M. J. Gómez-García, R. Rizzo, and A. Musolino, “Torque and Bearing Reaction Forces Simulation of Micro-Magnetic Gears”, ACES Journal, vol. 34, no. 04, pp. 541–546, Apr. 2019.

Issue

Section

Articles