Experimental Verification of Nonlinear Position-Flux Zero-Bias Control for Heteropolar Active Magnetic Bearing
Keywords:
Active magnetic bearing, control Lyapunov function, nonlinear flux controller, zero-bias controlAbstract
This study presents experimental verification of a nonlinear position-flux control for active magnetic bearing (AMB) system operated with zero-bias flux. Recently developed controllers for nonlinear fluxcontrolled AMB applications are complicated and inherently difficult to implement. Therefore, three designs of low-order controllers are proposed using nonlinear feedback tools including Lyapunov-based techniques and control Lyapunov functions (CLFs). The control objective is to globally stabilize the rotor mass position in the AMB system. Responses of the AMB system states to initial condition and to external load disturbance are presented and the simulation and experimental results for transient responses are compared. The overshoots are compensated for the zero neighbourhood, and the rotor position amplitude does not exceed 2.5% of the air gap.
Downloads
References
Z. Gosiewski and A. Mystkowski, “Robust control of active magnetic suspension: analytical and experimental results,” Mechanical Systems & Signal Processing, vol. 22, pp. 1297-1303, 2008.
A. Mystkowski, “Mu-synthesis for magnetic bearings of flywheel,” Proc. in Applied Mathematics and Mechanics (PAMM), Wiley Online Library, vol. 9, pp. 631-632, 2009.
A. Mystkowski, “-synthesis control of flexible modes of AMB rotor,”Acta Mechanica et Automatica, vol. 4, pp. 83-90, 2010.
P. Tsiotras and B. C. Wilson, “Zero- and low-bias control designs for active magnetic bearings,” IEEE Trans. Contr. Syst. Technol., vol. 11, pp. 889-904, 2003.
P. Tsiotras and M. Arcak, “Low-bias control of AMB subject to voltage saturation: state-feedback and observer designs,” Proc. of the 41st IEEE Conf. on Decision and Contr., Las Vegas, NV, USA, pp. 2474-2479, 10-13 Dec. 2002.
A. Mystkowski and A. E. Pawluszewicz, “Nonlinear position-flux zero-bias control for AMB system with disturbance,” Applied Computational Electromagnetics Society Journal, vol. 32, no. 8, pp. 650- 656, 2017.
A. Mystkowski and E. Pawluszewicz, “Remarks on some robust nonlinear observer and state-feedback zero-bias control of AMB,” IEEE The 16th Int. Carpathian Control Conf., Szilvásvárad, Hungary, pp. 328-333, 2015.
A. Mystkowski, E. Pawluszewicz, and R. P. Jastrzebski, “Nonlinear position-flux zero-bias control for AMB system,” IEEE 20th Int. Conf. on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 24-27, 24-27 Aug. 2015.
H. Bleuler, D. Yischer, G. Schweitzer, et al., “New concepts for cost-effective magnetic bearing control,” Automatica, vol. 30, pp. 871-876, 1994.
A. Charara, J. De Miras, and B. Caron, “Nonlinear control of a magnetic levitation system without premagnetization,” IEEE Trans. Contr. Syst. Technol., vol. 4, pp. 513-523, 1996.
R. P. Jastrzebski, A. Smirnov, A. Mystkowski, and O. Pyrhönen, “Cascaded position-flux controller for AMB system operating at zero bias,” Energies, vol. 7, pp. 3561-3575, 2014.
A. Mystkowski, E. Pawluszewicz, and E. Dragašius, “Robust nonlinear position-flux zero-bias control for uncertain AMB system,” Int. J. of Contr., vol. 88, pp. 1619-1629, 2015.
Z. Artstein, “Stabilization with relaxed controls,” Nonlinear Analysis, vol. 7, pp. 1163-1173, 1983.
E. D. Sontag, “A Lyapunov-like characterization of asymptotic controllability,” SIAM Journal of Control and Optimization, vol. 21, pp. 462-471, 1983.
E. D. Sontag, “A universal construction of Artstein’s theorem on nonlinear stabilization,” Systems and Control Letters, vol. 13, pp. 117-123, 1989.
R. A. Freeman and P. V. Kokotović, “Inverse optimality in robust stabilization,” SIAM Journal of Control and Optimization, vol. 34, pp. 1365-1391, 1996.
R. A. Freeman and P.V. Kokotović, Robust Nonlinear Control Design – State–Space and Lyapunov Techniques, Boston: Birkhäuser, 1996.
R. A. Freeman and P. V. Kokotović, “Design of ‘softer’ robust nonlinear control laws,” Automatica, vol. 29, pp. 1425-1437, 1996.
F. Clarke, “Lyapunov functions and feedback in nonlinear control, optimal control, stabilization and nonsmooth analysis,” Lecture Notes in Control and Information Science, vol. 301, pp. 267-282, 2004.
I. Kanellakopoulos, P. V. Kokotović, and A. S. Morse, “A toolkit for nonlinear feedback design,” Systems and Control Letters, vol. 18, pp. 83-92, 1992.
F. Alonge, M. Cirrincione, M. Pucci, and A. Sferlazza, “A nonlinear observer for rotor flux estimation of induction motor considering the estimated magnetization characteristic,” IEEE Trans. on Industry Applications, vol. 53, no. 6, pp. 5952-5965, 2017.
J. Fei and J. Zhou, “Robust adaptive control of MEMS triaxial gyroscope using fuzzy compensator,” IEEE Sys., Man. and Cybernetics Society, vol. 42, no. 6, pp. 1599-1607, 2012.
H. S. Zad, T. I. Khan, and I. Lazoglu, “Design and adaptive sliding-mode control of hybrid magnetic bearings,” IEEE Trans. on Industrial Electronics, vol. 65, no. 3, pp. 2537-2547, 2018.
M. Preindl, “Robust control invariant sets and Lyapunov-based MPC for IPM synchronous motor drives,” IEEE Trans. on Ind. Electronics, vol. 63, no. 6, pp. 3925-3933, 2016.
A. Bressan and B. Piccoli, “Introduction to the mathematical theory of control,” Springfield: American Institute of Mathematical Sciences, Applied Math, vol. 2, 2007.
Z. Gosiewski and A. Mystkowski, “The robust control of magnetic bearings for rotating machinery,” Solid State Phenomena, vol. 113, pp. 125-130, 2006.