Mode Tracking for Parametrized Eigenvalue Problems in Computational Electromagnetics
Keywords:
Eigenvalue Derivatives, Finite Element Method, Finite Integration Technique, Mode Tracking, Parametrized Eigenvalue ProblemsAbstract
An algorithm to perform a mode tracking for parameter dependent eigenvalue problems in computational electromagnetics is presented. It is based on a Taylor expansion using the derivatives of the eigenvalue and the eigenvector and allows distinguishing between intersection and touching points in the eigenvalue curves. The method is applied to discretizations with both the finite integration technique (FIT) and the finite element method (FEM), leading to simple and generalized eigenvalue problems, respectively. The applications include the calculation of the Brillouin diagram for a periodic structure and the variation of a material parameter in a filter structure.
Downloads
References
T. Weiland, “Modes in infinitely repeating structures of cylindrical symmetry,” Proceedings of the International Linear Accelerator Conference, pp. 292–295, 1986.
R. B. Nelson, “Simplified calculation of eigenvector derivatives,” AIAA Journal, vol. 14,9 pp. 1201–1205, 1976.
R. L. Dailey, “Eigenvector derivatives with repeated eigenvalues,” AIAA Journal, vol. 27,4, pp. 486–491, 1989.
N. Burschapers, S. Fiege, R. Schuhmann, and A. Walther, “Sensitivity ¨ analysis of waveguide eigenvalue problems,” Adv. Radio Sci., vol. 9, pp. 85–89, 2011. doi:10.5194/asr-9-85-2011.
P. Jorkowski and R. Schuhmann, “Higher-order sensitivity analysis of periodic 3-D eigenvalue problems for electromagnetic field calculations,” Adv. Radio Sci., 15, pp. 215–221, 2017. doi:10.5194/ars-15-215-2017.
D. Klindworth and K. Schmidt, “An efficient calculation of photonic crystal band structures using Taylor expansions,” Commun. Comput. Phys., vol. 16,5, pp. 1355–1388, 2014. doi:10.4208/cicp.240513.260614a.
B. T. Bandlow, “Zur Berechnung elektromagnetischer Eigenwertprobleme in der numerischen Simulation von Nanostrukturen mit periodischen und transparenten Randbedingungen,” Ph.D. Thesis, Univ. Paderborn, Germany, 2011. urn:nbn:de:hbz:466:2-110.
C. Schenker, P. Jorkowski, K. Schmidt, and R. Schuhmann, “Solution of nonlinear eigenvalue problems in electromagnetic field computation using contour integrals,” Book of Abstracts of Kleinheubacher Tagung, 25.-27.09.2017, pp. 33–34, 2017.
CST Studio Suite 2018, CST – Computer Simulation Technology GmbH, Darmstadt, Germany. http:www.cst.com
R. Schuhmann, “Periodische Rander mit FIT: Operatorbasierte Schreib- ¨ weise,” TU Darmstadt, Internal Report, 2002.
MATLAB R2017b, The MathWorks, Inc., Natick, Massachusetts, United States. http:www.mathworks.com
J. R. Brauer and G. C. Lizalek, “Microwave filter analysis using a new 3-D finite-element modal frequency method,” IEEE Transactions on Microwave Theory and Techniques, vol. 45,5, pp. 810–818, 1997. doi:10.1109/22.575605.
J.-F. Lee and R. Mittra, “A note on the application of edge-elements for modeling three-dimensional inhomogeneously-filled cavities,” IEEE Transactions on Microwave Theory and Techniques, vol. 40,9, pp. 1767– 1773, 1992. doi:10.1109/22.156603.