Powering Sensors in IoT System by Using Compact Seven Band PIFA Rectenna

Authors

  • Nermeen A. Eltresy 1 Electronics and Communication Engineering Department Ain Shams University, Cairo, Egypt 2 Microstrip Department Electronics Research Institute, Giza, 12622, Egypt
  • Dalia M. Elsheakh 2 Microstrip Department Electronics Research Institute, Giza, 12622, Egypt , 3 Hawaii University at Manoa Hawaii Center for Advanced Communication, Honolulu, 96922, Honolulu, Hawaii, USA
  • Esmat A. Abdallah Microstrip Department Electronics Research Institute, Giza, 12622, Egypt
  • Hadia M. Elhennawy Electronics and Communication Engineering Department Ain Shams University, Cairo, Egypt

Keywords:

Ambient RF waves, Energy Harvesting (EH), Internet of things (IoT), Printed F Antenna (PIFA), rectifier, rectenna, Radio Frequency (RF)

Abstract

A compact seven band coplanar waveguide fed planar inverted F antenna (PIFA) is presented. The proposed antenna is designed to harvest the ambient radio frequency energy at GSM 900, GSM 1800, LTE band 11 and 7, UMTS 2100, Wi-Fi 2.4, LTE and WIMAX 5.2. The antenna is simulated using 3D electromagnetic simulators CST and HFSS. Moreover, the antenna is fabricated and it is used to measure the indoor RF spectrum in Egypt. A simple AC to DC converter unit is designed by using HSMS 2850 Schottky diode to convert the collected RF energy to DC energy. The antenna and the AC to DC converter are integrated to form the RF energy harvesting system. The maximum measured efficiency obtained at 2.4 GHz is about 63.7%.

Downloads

Download data is not yet available.

References

L. Atzoria, A. Ierab, and G. Morabito, “The internet of things: A survey,” Computer Networks, vol. 54, no. 15, pp. 2787-2805, Oct. 2010.

R. Arpita, K. Saxena, and A. A. Bhadra, “Internet of things,” International Journal of Engineering Studies and Technical Approach, vol. 1, no. 4, pp. 36-42, Apr. 2015.

C. Knight, J. Davidson, and S. Behrens, “Energy options for wireless sensor nodes,” Wireless Sensor Technologies and Applications, vol. 8, no. 12, pp. 8037-8066, Dec. 2008.

H. Wong and Z. Dahari, “Human body parts heat energy harvesting using thermoelectric module,” Conference on Energy Conversion (CENCON), Malaysia, 19-20 Oct. 2015.

M. Ashraf and N. Masoumi, “Thermal energy harvesting power supply with an internal startup circuit for pacemakers,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 1, pp. 26-37, Jan. 2016.

S. E. Jo, M. K. Kim, M. S. Kim, and Y. J. Kim, “Flexible thermoelectric generator for human body heat energy harvesting,” Electronics Letters, vol. 48, no. 16, pp. 1013-1015, Aug. 2012.

S. T. Yusuf, A. M. Yatim, A. S. Samosir, and M. Abdulkadir, “Mechanical energy harvesting devices for low frequency applications: revisited,” ARPN Journal of Engineering and Applied Sciences, vol. 8, no. 7, pp. 504-512, July 2013.

Available:https://www.researchgate.net/profile/Sa njib_Panda2/publication/264889802/figure/fig6/A S:392161456607247@1470509985797/Fig-8-Typesof-ambient-energy-sources-suitable-for-energy-ha rvesting-Some-energy.jpg

N. M. Din, C. K. Chakrabarty, A. B. Ismail, K. K. A. Devi, and W.-Y. Chen, “Design of RF energy harvesting system for energizing low power devices,” Progress In Electromagnetics Research (PIER), vol. 132, pp. 49-69, 2012.

X. Yang, C. Jiang, A. Z. Elsherbeni, F. Yang, and Y.-Q. Wang, “A novel compact printed rectenna for data communication systems,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 5, pp. 2532-2539, May 2013.

X. Bai, J. Zhang, L. J. Xu, and B. Zhao, “A broadband CPW fractal antenna for RF energy harvesting,” ACES Journal, vol. 33, no. 5, pp. 482- 487, May 2018.

D.-L. Jin, T.-T. Bu, J.-S. Hong, J.-F. Wang, and H. Xiong, “A tri-band antenna for wireless applications using slot-type SRR,” ACES Journal, vol. 29, no. 1, pp. 47-53, Jan. 2014.

Y. Li, W. Li, and W. Yu, “A multi-band/UWB MIMO/diversity antenna with an enhanced isolation using radial stub loaded resonator,” ACES Journal, vol. 28, no. 1, pp. 8-20, Jan. 2013.

B. Yan, D. Jiang, and J. Chen, “Triple notch UWB antenna controlled by novel common direction pentagon complementary split ring resonators,” ACES Journal, vol. 29, no. 5, pp. 422-427, May 2014.

K. L. Sheeja, P. K. Sahu, S. K. Behera, and N. Dakhli, “Compact tri-band metamaterial antenna for wireless applications,” ACES Journal, vol. 27, no. 115, pp. 947-955, Nov. 2012.

A. M. Soliman, D. M. Elsheakh, and E. A. Abdallah, “Quad band CPW-planar IFA with independent frequency control for wireless applications,” Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, Chicago, USA, pp. 1-2, July 2012.

D. M. Elsheakh, A. M. Soliman, and E. A. Abdallah, “Low specific absorption rate hexa-band coplanar waveguide-fed planar inverted-F antenna with independent resonant frequency control for wireless communication applications,” in IET Microwaves, Antennas & Propagation, vol. 8, no. 4, pp. 207-216, Mar. 2014.

C. L. Tsai, S. M. Deng, C.-K. Yeh, and S.-S. Bor, “CPW-fed PIFA with finite ground plane for WLAN dual-band applications,” 2006 IEEE Antennas and Propagation Society International Symposium, Albuquerque, USA, pp. 4269-42729, 14 July 2006.

A. Soliman, D. Elsheakh, E. Abdallah, and H. El-Henawy, “CPW fed planar IFA with applied electromagnetic band-gap ground plane,” 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), Orlando, USA, pp. 282-283, July 2013.

CST Microwave Studio, ver. 2012, Computer Simulation Technology, Framingham, MA, 2012. [21] Ansoft High Frequency Structure Simulator (HFSS) ver. 14, Ansoft Corp., 2014.

Surface Mount Microwave Schottky Detector Diodes, HSMS-2850/2860 Series Agilent (HewlettPackard), 1998.

S. Ladan, N. Ghassemi, A. Ghiotto, and K. Wu, “Highly efficient compact rectenna for wireless energy havrvesting application,” IEEE Microwave Magazine, vol. 14, no. 1, pp. 117-122, Feb. 2013.

K. Niotaki, S. Kim, S. Jeong, A. Collado, A. Georgiadis, and M. M. Tentzeris, “A compact dualband rectenna using slot-loaded dual band folded dipole antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 1634-1637, Dec. 2013.

Downloads

Published

2021-07-18

How to Cite

[1]
Nermeen A. Eltresy, Dalia M. Elsheakh, Esmat A. Abdallah, and Hadia M. Elhennawy, “Powering Sensors in IoT System by Using Compact Seven Band PIFA Rectenna”, ACES Journal, vol. 33, no. 12, pp. 1411–1419, Jul. 2021.

Issue

Section

Articles