Effect of Aspect Ratio and Frequency of an Open-Ended, Coaxial Line on Admittance for Determination of Moisture in Tenera Oil Palm Fruit Using Finite Difference Method

Authors

  • E. M. Cheng 1 School of Mechatronic Engineering, University Malaysia Perlis (UniMAP) Pauh Putra Campus, 02600 Arau, Perlis, Malaysia ,2 Bioelectromagnetic Research Group (BioEM), University Malaysia Perlis (UniMAP) Pauh Putra Campus, 02600 Arau, Perlis, Malaysia
  • Z. Abbas Physics Department, Faculty of Science, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
  • Mohamedfareq Abdulmalek Faculty of Engineering and Information Sciences, University of Wollongong in Dubai Dubai Knowledge Village, Dubai, United Arab Emirates
  • K. Y. You School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia Skudai, Johor 81310, Malaysia
  • K. Y. Lee Lee Kong Chian Faculty of Engineering & Science, Tunku Abdul Rahman University Sungai Long Campus, Jalan Sungai Long, Sungai Long City, Cheras, 43000 Kajang, Selangor, Malaysia
  • N. F. Mohd Nasir School of Mechatronic Engineering, University Malaysia Perlis (UniMAP) Pauh Putra Campus, 02600 Arau, Perlis, Malaysia
  • M. S. Abdul Majid School of Mechatronic Engineering, University Malaysia Perlis (UniMAP) Pauh Putra Campus, 02600 Arau, Perlis, Malaysia
  • S. F. Khor School of Electrical Systems Engineering, Univerisiti Malaysia Perlis (UniMAP) Pauh Putra Campus, Arau, Perlis 02600, Malaysia

Keywords:

Conductance, finite difference method, moisture content, normalized admittance, oil palm fruit, open-ended coaxial sensor, susceptance

Abstract

This paper intends to study the effect of variations of aspect ratio (the ratio of outer radius to inner radius of conductor) and frequency to the normalized admittance (normalized conductance and susceptance) of oil palm fruit with various moisture content (MC) on performance of RG405/U semi-rigid cable (open-ended coaxial line). Both finite difference method (FDM) and quasi-static model (admittance model) were used to compare response of normalised conductance and susceptance due to 30%, 40%, 60%, 70% and 80% of moisture content that explain all ripeness stage of oil palm fruit. Finite difference method is used to simulate complex admittance due to different MC in oil palm fruit in various ripeness. The FDM results were then compared with the quasi-static model through error analysis. The aspect ratio of 3.298 has smaller error of normalized conductance when frequency range <3 GHz.

Downloads

Download data is not yet available.

References

Z. Song, F. Duval, D. Su, and A. Louis, “Stable partial inductance calculation for partial element equivalent circuit modeling,” ACES J., vol. 25, no. 9, pp. 738-748, 2010.

C. Filippo, M. Agostino, and M. Giuliano, “An overview of equivalent circuit modeling techniques of frequency selective surfaces and metasurfaces,” ACES J., vol. 29, no. 12, pp. 960-976, 2014.

C. Salvatore, B. Emanuela, and M. Andrea, “A microwave imaging approach based on amplitude only data for the reconstruction of the electromagnetic field induced in biological phantoms,” ACES J., vol. 16, no. 2, pp. 79-89, 2001.

J. A. Tuszynski, P. Winter, D. White, C.-Y. Tseng, K. K. Sahu, F. Gentile, I. Spasevska, S. I. Omar, N. Nayebi, C. D. M. Churchill, M. Klobukowski, and R. M. A. El-Magd, “Mathematical and computational modeling in biology at multiple scales,” Theor. Biol Med. Model., vol. 11, no. 52, pp. 1-42, 2014.

G. K. Vagenas and D. Marinos-Kouris, “Finite element simulation of drying of agricultural products with volumetric changes,” Appl. Math. Modelling, vol. 15, no. 9, pp. 475-482, 1991.

Z. Huang, H. Zhu, and S. Wang, “Finite element modeling and analysis of radio frequency heating rate in mung beans,” Trans. ASABE, vol. 58, no. 1, pp. 149-160, 2015.

B. Qin, Q. Zhang, G. V. Barbosa-Cánovas, B. G. Swanson, and P. D. Pedrow, “Pulsed electric field treatment chamber design for liquid food Pasteurization using a finite element method,” Trans. ASAE, vol. 38, no. 2 pp. 557-565, 1995.

S. O. Nelson, “Electrical properties of agricultural products (a critical review),” Trans. ASAE, vol. 16, no. 2, pp. 384-400, 1973.

K. Y. You, A. Zulkifly, L. L. You, K. Y. Lee, and E. M. Cheng, “Palm oil moisture monitoring based on dielectric properties at microwave frequencies,” Int. J. Microw. Opt. Tech., vol. 9, no. 4, pp. 294- 302, 2014.

A. Zulkifly, K. Y. You, A. S. Halim, H. Jumiah, S. Elias, K. Kaida, and Z. Azmi, “Fast and simple technique for determination of moisture content in oil palm fruits,” Jpn. J. Appl. Phys., vol. 44, no. 7A, pp. 5272-5274, 2005.

A. Zulkifly, K. Y. You, A. S. Halim, K. Kaida, H. Jumiah, and S. Elias, “Complex permittivity and moisture measurements of oil palm fruits using an open-ended coaxial sensor,” IEEE Sens. J., vol. 5, no. 6, pp. 1281-1287, 2005.

K. Y. Lee, A. Zulkifly, M. D. Nur Sharizan, and K. Y. You, “Portable microwave instrumentation system for determination of moisture content in oil palm fruits,” Jpn. J. Appl. Phys., vol. 48, no. 12R, 120219, 2009.

C. W. S. Hartley, The Oil Palm. Longman, London, 1988.

A .Ariffin, S. R. Mat, M. Banjari, and O. W. E. Wan, “Morphological changes of the cellular component of the developing palm fruit (Tenera: Elaeis Guineesis),” Palm Oil Research Institute of Malaysia Bulletin, no. 21, pp. 30-34, 1990.

K. Y. You and A. Zulkifly, Open-Ended Coaxial Sensor Handbook: Formulations, Microwave Measurements and Applications. Saarbrücken, Germany: LAP Lambert Academic Publishing, 2010.

E. M. Cheng, A. Zulkifly, A. M. MohamedFareq, K. Y. Lee, K. Y. You, S. F. Khor, H. Jumiah, and Z. Hishamuddin, “Finite difference analysis of an open-ended, coaxial sensor made of semi-rigid coaxial cable for determination of moisture in Tenera oil palm fruit,” ACES J., vol. 31, no. 10, pp. 1181-1192, 2016.

E. M. Cheng, A. Zulkifly, A. R. S. Hasliza, K. Y. Lee, K. Y. You, H. Jumiah, Z. Hishamuddin, and S. F. Khor, “Analysis on monopole antenna for moisture determination in oil palm fruit using finite difference method,” J. Electr. Eng. Technol., vol. 11, no. 6, pp. 1754-1762, 2016.

S. Khandige and D. Misra, “Characterization of the layered dielectrics using an open-ended coaxial line sensor,” In Proceeding of Conference on Precision Electromagnetic Measurements Digest, pp. 65-66, 27th June-1st July, 1994.

M. A. Stuchly and S. S. Stuchly, “Coaxial line reflection methods for measuring dielectric properties of biological substances at radio and microwave frequencies-A review,” IEEE Trans. Instrum. Meas., vol. 29, no. 3, pp. 176-183, 1980.

G. B. Gajda and S. S. Stuchly, “Numerical analysis of open-ended coaxial lines,” IEEE Trans. & Microwave Theory Tech., vol. MTT-31, no. 5, pp. 380-384, 1983.

M. A. Stuchly, T. W. Athley, G. M. Samaras, and G. E. Taylor, “Measurement of radio frequency permittivity of biological tissue with an openended coaxial line: Part II-Experimental results,” IEEE Trans. & Microwave Theory Tech., vol. 30, no. 1, pp. 87-92, 1982.

D. Misra, “A quasi-static analysis of open-ended coaxial lines,” IEEE Trans. & Microwave Theory Tech., vol. MTT-35, no. 10, pp. 925-928, 1987.

J. M. Anderson, G. B. Gajda, and S. S. Stuchly, “Analysis of an open-ended coaxial line sensor in layer dielectric,” IEEE Trans. Instrum. Meas., vol. IM-35, no. 1, pp.13-18, 1986.

M. A. Stuchly, M. M. Brady, S. S. Stuchly, and G. Gadja, “Equivalent circuit of an open-ended coaxial line in a lossy dielectric,” IEEE Trans. Instrum. Meas., vol. IM-31, no. 2, pp. 116-119, 1982.

A. Taflove, Computational Electrodynamics: The Finite Difference Time Domain Method. Boston, MA: Artech House, 1995.

Z. Pei-bai, Numerical Analysis of Electromagnetic Fields. New York: Springer-Verlag Berlin Heidelberg, pp. 88-92, 1993.

H. Levine and C. H. Papas, “Theory of the circular diffraction antenna,” J. Appl. Phys. 22(1): 29-43, 1951.

E. C. Burdette, F. L. Clain, and J. Seals, “In vivo probe measurement technique for determining dielectric properties at VHF through microwave frequencies,” IEEE Trans. & Microwave Theory Tech., vol. MTT-28, no. 4, pp. 414-427, 1980.

H. Bussey, “Dielectric measurement in a shielded open circuit coaxial line,” IEEE Trans. Instrum. Meas., 29:120-124, 1980.

M. A. Stuchly and S. S. Stuchly, “Coaxial line reflection methods for measuring dielectric properties of biological substances at radio and microwave frequencies-A review,” IEEE Trans. Instrum. Meas., 30:228-229, 1980.

T. W. Athey, M. A. Stuchly, and S. S. Stuchly, “Measurement of radio-frequency permittivity of biological tissues with an open-ended coaxial linePart I,” IEEE Trans. & Microwave Theory Tech., 30(1), pp. 82-86, 1982.

M. M. Brady, S. A. Symons, and S. S. Stuchly, “Dielectric behavior of selected animal tissue in vitro at frequencies from 2 to 4 GHz,” IEEE Trans. Biomedical Eng. 28: 305-307, 1981.

M. A. Stuchly, M. M. Brady, S. S. Stuchly, and G. Gadja, “Equivalent circuit of an open-ended coaxial line in a lossy material,” IEEE Trans. Instrum. Meas., 31:116-119, 1982.

D. Misra, M. Chabbra, B. R. Epstein, M. Mirotznik, and K. R. Foster, “Noninvasive electrical characterization of materials at microwave frequencies using an open-ended coaxial line: Test of an improved calibration technique,” IEEE Trans. Microwave Theory Tech., 38:8-14, 1990.

S. S. Stuchly, C. L. Sibbald, and J. M. Anderson, “A new aperture admittance model for open-ended waveguides,” IEEE Trans. & Microwave Theory Tech., vol. 42, pp. 192-198, 1994.

J. M. Anderson, C. L. Sibbald, S. S. Stuchly, and K. Caputa, “Advances in dielectric measurements using an open-ended coaxial line sensor,” CCECE/ CCGEI, pp. 916-919, 1993.

J. M. Anderson, G. B. Gajda, and S. S. Stuchly, “Dielectric measurements using a rational function model,” IEEE Trans. & Microwave Theory Tech., vol. 42, pp. 199-204, 1994.

K. Y. You, Z. Abbas, and K. Khalid, “Application of microwave moisture sensor for determination of oil palm fruit ripeness,” Meas. Sci. Review, vol. 10, no. 1, pp. 7-14, 2010.

N. Marcuvtiz, Waveguide Handbook. Boston, MA: Boston Tech. Pub., 1964.

C. L. Pournaropoulos and D. Misra, “A study on the coaxial aperture electromagnetic sensor and its application in material characterization,” IEEE Trans. Instrum. Meas., vol. 43, no. 2, pp. 111-115, 1994.

M. Kent and A. C. Jason, Water Relations of Foods. New York: Academic Press, 1975.

R. E. Mudgett, S. A. Goldblith, D. I. C. Wang, and W. B. Westphal, “Prediction of dielectric properties in solid food of high moisture content at ultrahigh and microwave frequencies,” J. Food. and Preservation, vol. 1, no. 2, pp. 119-151, 1977.

Downloads

Published

2021-07-18

How to Cite

[1]
E. M. Cheng, “Effect of Aspect Ratio and Frequency of an Open-Ended, Coaxial Line on Admittance for Determination of Moisture in Tenera Oil Palm Fruit Using Finite Difference Method”, ACES Journal, vol. 33, no. 11, pp. 1308–1318, Jul. 2021.

Issue

Section

Articles