Effect of Symmetry on Insertion Loss in SRR and CSRR Transmitarray Unit Cells Implementing the Element Rotation Method

Authors

  • Emre Erdil Department of Electrical and Electronics Engineering Middle East Technical University, Ankara, Turkey
  • Kagan Topalli TUBITAK Space Technologies Research Institute Microwave and Antenna Systems Group, Ankara, Turkey
  • Ozlem Aydin Civi Department of Electrical and Electronics Engineering Middle East Technical University, Ankara, Turkey

Keywords:

CSRR, element rotation method, SRR, transmitarray

Abstract

Insertion loss variation with respect to rotation angle is examined for geometrically symmetrical and unsymmetrical split ring resonators (SRR) and complementary split ring resonators (CSRR) transmitarray unit cells implementing the element rotation method. Generalized design conditions for the implementation of the method on transmitarrays are derived. Based on the S-parameters obtained by full-wave electromagnetic simulations and field analysis, it is shown that the symmetry of CSRR unit cells has an important effect on decreasing insertion loss variation with respect to rotation angle. Up to 3 dB improvement in insertion loss is achieved for the symmetrical single ring double split CSRR type unit cell. It is also shown for two nested non symmetric SRR unit cells that, insertion loss is almost independent of the element rotation when the transmission is mainly provided by the symmetrical part of the unit cell.

Downloads

Download data is not yet available.

References

J. Huang and R. J. Pogorzelski, “A Ka-band microstrip reflectarray with elements having variable rotation angles,” IEEE Trans. Antennas Propag., vol. 46, no. 5, pp. 650-656, May 1998.

C. Guclu, J. Perruisseau-Carrier, and O. Aydin Civi, “Proof of concept of a dual-band circularlypolarized RF MEMS beam-switching reflectarray,” IEEE Trans. Antennas Propag., vol. 60, no. 11, pp. 5451-5455, Nov. 2012.

R. H. Phillion and M. Okoniewski, “Lenses for circular polarization using planar arrays of rotated passive elements,” IEEE Trans. Antennas Propag., vol. 59, no. 4, pp. 1217-1227, Apr. 2011.

A. E. Martynyuk, J. I. Martinez Lopez, and N. A. Martynyuk, “Spiraphase-type reflectarrays based on loaded ring slot resonators,” IEEE Trans. Antennas Propag., vol. 52, no. 1, pp. 142-153, 2004.

B. Strassner, C. Han, and K. Chang, “Circularly polarized reflectarray with microstrip ring elements having variable rotation angles,” IEEE Trans. Antennas Propag., vol. 52, pp. 1122-1125, Apr. 2004.

M. Euler and V. F. Fusco, “Frequency selective surface using nested split ring slot elements as a lens with mechanically reconfigurable beam steering capability,” IEEE Trans. Antennas Propag., vol. 58, no. 10, pp. 3417-3421, Oct. 2010.

T. Smith, U. Gothelf, O.S. Kim, and O. Breinbjerg, “Design, manufacturing, and testing of a 20/30- GHz dual-band circularly polarized reflectarray antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 1480-1483, 2013.

M.-Y. Zhao, G.-Q. Zhang, X. Lei, J.-M. Wu, and J.-Y. Shang, “Design of new single-layer multipleresonance broadband circularly polarized reflectarrays,” IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 356-359, 2013.

S. Zainud-Deen, S. Gaber, H. Malhat, and K. Awadalla, “Single feed dual-polarization dualband transmitarray for satellite applications,” ACES Journal, vol. 29, no. 2, Feb. 2014.

E. Erdil, K. Topalli, N. S. Esmaeilzad, O. Zorlu, H. Kulah, and O. A. Civi, “Reconfigurable nested ring-split ring transmitarray unit cell employing the element rotation method by microfluidics,” IEEE Trans. Antennas Propag., vol. 63, no. 3, pp. 1163- 1167, Mar. 2015.

S. Zainud-Deen, S. Gaber, H. Malhat, and K. Awadalla, “Single feed dual-polarization dualband transmitarray for satellite applications,” ACES Journal, vol. 29, no. 2, 2014.

S. H. Zainud-Deen, W. M. Hassan, and H. A. Malhat, “Near-field focused folded transmitarray antenna for medical applications,” ACES Journal, vol. 31, no. 3, 2016.

A. Hassan, F. Yang, A. Z. Elsherbeni, and P. Nayeri, Analysis and Design of Transmitarray Antennas. Morgan and Claypool, 2017.

ANSYS® HFSS, Version 13, Online Help, Master and Slave Boundaries.

A. K. Bhattacharyya, Phased Array Antennas: Floquet Analysis, Synthesis, BFNs, and Active Array Systems. Hoboken, NJ: Wiley, 2006.

M-A. Milon, R. Gillard, D. Cadoret, and H. Legay, “Comparison between the “infinite array approach” and the “surrounded-element approach” for the simulation of reflectarray antennas,” 2006 IEEE Antennas and Propagation Society International Symposium, Albuquerque, NM, pp. 4339-4342, 2006.

Downloads

Published

2021-07-22

How to Cite

[1]
Emre Erdil, Kagan Topalli, and Ozlem Aydin Civi, “Effect of Symmetry on Insertion Loss in SRR and CSRR Transmitarray Unit Cells Implementing the Element Rotation Method”, ACES Journal, vol. 33, no. 08, pp. 835–841, Jul. 2021.

Issue

Section

Articles