Efficient Design of Metamaterial Absorbers using Parametric Macromodels


  • Giulio Antonini 1UAq EMC Laboratory, Dipartimento di Ingegneria Industriale e dell’Informazione e di Economia Universit`a degli Studi dell’Aquila, 67100 L’Aquila, Italy
  • Maria Denise Astorino 2Department of Information Engineering, Electronics and Telecommunications La Sapienza University of Rome, 00184 Rome, Italy
  • Francesco Ferranti Microwave Department Institut Mines-T´el´ecom Atlantique, CNRS UMR 6285 Lab-STICC, 29238 Brest CEDEX 3, France
  • Fabrizio Frezza Department of Information Engineering, Electronics and Telecommunications La Sapienza University of Rome, 00184 Rome, Italy
  • Nicola Tedeschi Department of Information Engineering, Electronics and Telecommunications La Sapienza University of Rome, 00184 Rome, Italy


Efficient Design, Metamaterial Absorbers, Optimization, Parametric Macromodeling


Metamaterial absorbers have recently attracted a lot of interest for applications spanning from microwave to terahertz, near infrared and optical frequencies, such as electromagnetic compatibility, thermal emitters, solar cells and micro- bolometers. In this paper, a procedure for the efficient design of metamaterial absorbers based on parametric macromodels is presented. These models are used to describe the frequency-domain behaviour of complex systems as a function of frequency and design parameters (e.g., layout features). Parametric macromodels are very efficient and can be used to speed up the design fow in comparison with using electromagnetic simulators for design tasks. The use of quasi-random sequences for the sampling of the design space and of radial basis functions and polynomial functions for the model construction is proposed. Numerical results validate the efficiency and accuracy of the proposed technique for multiple optimizations.


Download data is not yet available.


Q. Wu, K. Zhang, and G. H. Yang, “Manipulation of electromagnetic waves based on new unique metamaterials: theory and applications,” ACES Journal, vol. 12, pp. 977–989, December 2014.

O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, “A thin electromagnetic absorber for wide incidence angles and both polarizations,” IEEE Trans. Antennas Propag., vol. 57, no. 10, pp. 3119–3125, 2009.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B, vol. 79, no. 3, p. 033101, 2009.

S. Ghosh, S. Bhattacharyya, D. Chaurasiya, and K. V. Srivastava, “Polarisation-insensitive and wide-angle multi-layer metamaterial absorber with variable bandwidths,” Electronics Letters, vol. 51, no. 14, pp. 1050–1052, 2015.

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt., vol. 14, no. 8, p. 085102, 2012.

N. I. Landy, C. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarizationinsensitive absorber for terahertz imaging,” Phys. Rev. B, vol. 79, no. 12, p. 125104, 2009.

L. Lu, S. Qu, H. Ma, F. Yu, S. Xia, Z. Xu, and P. Bai, “A polarization-independent wideangle dual directional absorption metamaterial absorber,” Prog. Electromagn. Res. M, vol. 27, pp. 191–201, 2012.

D. Chaurasiya, S. Ghosh, S. Bhattacharyya, A. Bhattacharya, and K. V. Srivastava, “Compact multi-band polarisation-insensitive metamaterial absorber,” IET Microwaves, Antennas & Propagation, vol. 10, pp. 94–101, 2016.

J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express, vol. 19, no. 22, p. 21155, 2011.

S. Gu, J. P. Barrett, T. H. Hand, B. I. Popa, and S. A. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys., vol. 108, no. 6, p. 064913, 2010.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett., vol. 100, no. 20, p. 207402, 2008.

J. Grant, S. S. Y. Ma, L. B. Lok, A. Khalid, and D. R. S. Cumming, “Polarization insensitive terahertz metamaterial absorber,” Opt. Lett., vol. 36, no. 8, pp. 1524–1526, 2011.

G. Dayal and S. A. Ramakrishna, “Design of highly absorbing metamaterials for infrared frequencies,” Opt. Express, vol. 20, no. 16, pp. 17503–17508, 2012.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett., vol. 10, no. 7, p. 2342, 2010.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett., vol. 107, no. 4, p. 045901, 2011.

M. Laroche, R. Carminati, and J. J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys., vol. 100, no. 6, p. 063704, 2006.

T. Maier and H. Bruckl, “Wavelengthtunable microbolometers with metamaterial absorbers,” Opt. Lett., vol. 34, no. 19, pp. 3012– 3014, 2009.

R. L. Fante and M. T. McCormack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antennas Propag., vol. 36, no. 10, pp. 1443–1454, 1988.

E. F. Knott and C. D. Lunden, “The two-sheet capacitive Jaumann absorber,” IEEE Trans. Antennas Propag., vol. 43, no. 11, pp. 1339– 1343, 1995.

S. A. Tretyakov and S. I. Maslovski, “Thin absorbing structure for all incident angles based on the use of a high-impedance surface,” Microwave Opt. Technol. Lett., vol. 38, no. 3, pp. 175–178, 2003.

V. T. Pham, J. Park, D. L. Vu, H. Y. Zheng, J. Y. Rhee, K. Kim, and Y. P. Lee, “THz-metamaterial absorbers,” Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 4, no. 1, p. 015001, 2013.

C. Debus and P. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett., vol. 91, no. 18, p. 184102, 2007.

C. S. Y. Ra’di and S. Tretyakov, “Thin perfect absorbers for electromagnetic waves: the ory, design, and realization,” Phys. Rev. Appl., vol. 3, p. 037001, 2015.

B. A. Munk, Frequency Selective Surfaces: Theory and Design, Wiley, 2000.

M. D. Astorino, F. Frezza, and N. Tedeschi, “Broad-band terahertz metamaterial absorber with stacked electric ring resonators,” J. Electrom. Waves Appl., vol. 31, no. 7, pp. 727–739, 2017.

D.-H. Kwon, Z. Bayraktar, J. A. Bossard, D. H. Werner, and P. L. Werner, “Nature-inspired optimization of metamaterials,” in 24th Annual Review of Progress in Applied Computational Electromagnetics, April 2008.

S. Koziel, “Multi-fidelity optimization of microwave structures using response surface approximation and space mapping,” ACES Journal, vol. 24, pp. 600–608, December 2009.

S. Koziel, J. Bandler, and Q. Cheng, “Robust trust-region space-mapping algorithms for microwave design optimization,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 8, pp. 2166–2174, August 2010.

S. Koziel and J. Bandler, “Fast design optimization of microwave structures using co-simulation-based tuning space mapping,” ACES Journal, vol. 26, pp. 631–639, August 2011.

S. Koziel, “Space mapping: Performance, reliability, open problems and perspectives,” in 2017 IEEE MTT-S International Microwave Symposium (IMS), pp. 1512–1514, June 2017.

S. Koziel and A. Bekasiewicz, “Reliable lowcost surrogate modeling and design optimisation of antennas using implicit space mapping with substrate segmentation,” IET Microwaves, Antennas and Propagation, vol. 11, no. 14, pp. 2066–2070, 2017.

F. Ferranti, L. Knockaert, and T. Dhaene, “Parameterized S-parameter based macromodeling with guaranteed passivity,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 10, pp. 608–610, October 2009.

P. Triverio, S. Grivet-Talocia, and M. S. Nakhla, “A parameterized macromodeling strategy with uniform stability test,” IEEE Transactions on Advanced Packaging, vol. 32, no. 1, pp. 205–215, February 2009.

F. Ferranti, L. Knockaert, and T. Dhaene, “Passivity-preserving parametric macromodeling by means of scaled and shifted state-space systems,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 10, pp. 2394–2403, October 2011.

E. R. Samuel, L. Knockaert, F. Ferranti, and T. Dhaene, “Guaranteed passive parameterized macromodeling by using Sylvester state-space realizations,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1444– 1454, April 2013.

M. Kabir and R. Khazaka, “Parametric macromodeling of high-speed modules from frequency-domain data using Loewner matrix based method,” in IEEE MTT-S International Microwave Symposium, pp. 1–4, June 2013.

M. D. Astorino, F. Frezza, and N. Tedeschi, “Ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers for applications in the THz regime,” J. Appl. Phys., vol. 121, no. 6, p. 063103, 2017.

M. D. Astorino, R. Fastampa, F. Frezza, L. Maiolo, M. Marrani, M. Missori, M. Muzi, N. Tedeschi, and A. Veroli, “Polarizationmaintaining reflection-mode THz time-domain spectroscopy of a polyimide based ultra-thin narrow-band metamaterial absorber,” Scientific Reports, vol. 8, no. 1, p. 1985, 2018.

COMSOL Multiphysics 4.4, http://www.comsol.com/products.

B. Gustavsen, “Improving the pole relocating properties of vector fitting,” IEEE Transactions on Power Delivery, vol. 21, no. 3, pp. 1587– 1592, 2006.

L. Ljung, System Identification: Theory for the User (2nd Edition), Prentice Hall, 1999.

R. Pintelon and J. Schoukens, System Identification: A Frequency Domain Approach, WileyIEEE Press, 2012.

W. A. Weiser and S. E. Zarantonello, “A note on piecewise linear and multilinear table interpolation in many dimensions,” Mathematics of Computation, vol. 50, no. 181, pp. 253–264, January 1988.

F. Ferranti, L. Knockaert, and T. Dhaene, “Guaranteed passive parameterized admittance-based macromodeling,” IEEE Trans. Advanced Packaging, vol. 33, no. 3, pp. 623–629, August 2010.

J. De Caigny, J. Camino, and J. Swevers, “Interpolation-based modeling of MIMO LPV systems,” IEEE Transactions on Control Systems Technology, vol. 19, no. 1, pp. 46–63, 2011.

J. De Caigny, R. Pintelon, J. Camino, and J. Swevers, “Interpolated modeling of LPV systems,” IEEE Transactions on Control Systems Technology, vol. 22, no. 6, pp. 2232–2246, November 2014.

M. D. Buhmann, Radial Basis Functions, Cambridge University Press, New York, NY, USA, 2003.

G. Liu and Y. Gu, An Introduction to Meshfree Methods and Their Programming, Springer, 2005.

G. R. Liu, Meshfree Methods: Moving Beyond the Finite Element Method. Second Edition., CRC Press, 2010.

F. Ferranti and Y. Rolain, “A local identification method for linear parameter-varying systems based on interpolation of state-space matrices and least-squares approximation,” Mechanical Systems and Signal Processing, vol. 82, pp. 478–489, 2017.

W.-L. Loh, “On Latin hypercube sampling,” Ann. Statist., vol. 24, no. 5, pp. 2058–2080, 1996.

P. Brandimarte, Low-Discrepancy Sequences, pp. 379–401, John Wiley and Sons, Inc., 2014.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics), Springer, 2009.




How to Cite

Giulio Antonini, Maria Denise Astorino, Francesco Ferranti, Fabrizio Frezza, & Nicola Tedeschi. (2021). Efficient Design of Metamaterial Absorbers using Parametric Macromodels. The Applied Computational Electromagnetics Society Journal (ACES), 33(07), 772–780. Retrieved from https://journals.riverpublishers.com/index.php/ACES/article/view/9073