Post-processing Techniques for Polarimetric Passive Millimeter Wave Imagery

Authors

  • L. Wu 1 School of Electronic and Optical Engineering Nanjing University of Science & Technology, Nanjing, 210094, China, 2 Ministerial Key Laboratory of JGMT Nanjing University of Science & Technology, Nanjing, 210094, China
  • J. Q. Zhu School of Electronic and Optical Engineering Nanjing University of Science & Technology, Nanjing, 210094, China
  • S. S. Peng School of Electronic and Optical Engineering Nanjing University of Science & Technology, Nanjing, 210094, China
  • Z. L. Xiao School of Electronic and Optical Engineering Nanjing University of Science & Technology, Nanjing, 210094, China
  • Y. K. Wang School of Electronic and Optical Engineering Nanjing University of Science & Technology, Nanjing, 210094, China

Keywords:

Millimeter wave passive imaging, polarimetric imaging, remote sensing

Abstract

Post-processing techniques for polarimetric passive millimeter wave (MMW) imagery are proposed to display imaging information comprehensively. Initially an image fusion method based on two-scale decomposition is proposed to realize polarimetric passive imagery fusion. The fusion rules are separately designed for base layer and detail layer to reconstruct weight maps. Then an improved technique for displaying polarization information through color is proposed to present polarization features simultaneously with unpolarized imagery. Experimental results demonstrate that the proposed post-processing techniques are capable of presenting more informative imagery.

Downloads

Download data is not yet available.

References

E. Gonzalez-Sosa, R. Vera-Rodriguez, J. Fierrez, and V. Patel, “Exploring body shape from mmW images for person recognition,” IEEE Trans. Inf. Forensics Security, vol. 12, pp. 2078-2089, 2017.

L. Wu, S. Peng, Z. Xiao, and J. Xu, “Sensitivity analysis and tipping calibration of a W-band radiometer for radiometric measurements,” Appl. Comput. Electromagn. Soc. J., vol. 31, 2016.

S. Liao, N. Gopalsami, T. W. Elmer, E. R. Koehl, A. Heifetz, K. Avers, E. Dieckman, and A. C. Raptis, “Passive millimeter-wave dual-polarization imagers,” IEEE Trans. Instrum. Meas., vol. 61, pp. 2042-2050, 2012.

J. P. Wilson, C. A. Schuetz, C. E. Harrity, S. Kozacik, D. L. Eng, and D. W. Prather, “Measured comparison of contrast and crossover periods for passive millimeter-wave polarimetric imagery,” Opt. Express, vol. 21, pp. 12899-12907, 2013.

A. Duric, A. Magun, A. Murk, C. Matzler, and N. Kampfer, “The fully polarimetric imaging radiometer SPIRA at 91 GHz,” IEEE Trans. Geosci. Remote Sens., vol. 46, pp. 2323-2336, 2008.

P. S. Narvekar, G. Heygster, T. J. Jackson, R. Bindlish, G. Macelloni, and J. Notholt, “Passive polarimetric microwave signatures observed over Antarctica,” IEEE Trans. Geosci. Remote Sens., vol. 48, pp. 1059-1075, 2010.

Y. Cheng, F. Hu, L. Gui, L. Wu, and L. Lang, “Polarization-based method for object surface orientation information in passive millimeter-wave imaging,” IEEE Photon. J., vol. 8, pp. 1-12, 2016.

F. Hu, Y. Cheng, L. Gui, L. Wu, X. Zhang, X. Peng, and J. Su, “Polarization-based material classification technique using passive millimeter-wave polarimetric imagery,” Appl. Opt., vol. 55, pp. 8690- 8697, 2016.

S. Yeom, D. Lee, H. Lee, J. Son, and V. P. Gushin, “Vector clustering of passive millimeter wave images with linear polarization for concealed object detection,” Prog. Electromagn. Res. Lett., vol. 39, pp. 169-180, 2013.

X. Lu, Z. Xiao, and J. Xu, “Linear polarization characteristics for terrain identification at millimeter wave band,” Chin. Opt. Lett., vol. 12, pp. 101201, 2014.

S. Siegenthaler, M. Canavero, and A. Murk, “Postprocessing techniques for radiometric images,” IEEE Geoscience and Remote Sensing Symposium, Munich, pp. 2316-2319, July 2012.

J. P. Wilson, C. A. Schuetz, T. E. Dillon, D. L. Eng, S. Kozacik, and D. W. Prather, “Display of polarization information for passive millimeter-wave imagery,” Opt. Eng., vol. 51, pp. 091607, 2012.

S. Li, X. Kang, and J. Hu, “Image fusion with guided filtering,” IEEE Trans. Image Process., vol. 22, pp. 2864-2875, 2013.

Y. Zhai and M. Shah, “Visual attention detection in video sequences using spatiotemporal cues,” Proceedings of the 14th ACM International Conference on Multimedia, Santa Barbara, CA, pp. 815-824, Oct. 2006.

O. Stähli, “Novel Measurements with the Imaging Polarimeter SPIRA (91 GHz) after Technical Upgrades,” Master Thesis, Inst. Appl. Physics, University of Bern, Switzerland, 2009.

Y. Liu, S. Liu, and Z. Wang, “A general framework for image fusion based on multi-scale transform and sparse representation,” Inf. Fusion, vol. 24, pp. 147-164, 2015.

J. J. Lewis, R. J. O’Callaghan, S. G. Nikolov, D. R. Bull, and N. Canagrajah, “Pixel-and region-based image fusion with complex wavelets,” Inf. Fusion, vol. 8, pp. 119-130, 2007.

D. P. Bavirisetti and R. Dhuli, “Two-scale image fusion of visible and infrared images using saliency detection,” Infrared Phys. Tech., vol. 76, pp. 52- 64, 2016.

Downloads

Published

2021-07-25

How to Cite

[1]
L. Wu, J. Q. Zhu, S. S. Peng, Z. L. Xiao, and Y. K. Wang, “Post-processing Techniques for Polarimetric Passive Millimeter Wave Imagery”, ACES Journal, vol. 33, no. 05, pp. 512–518, Jul. 2021.

Issue

Section

Articles