Resistive Active Balanced Power Divider Design with Touchstone and Kron’s Formalism Hybrid Model

Authors

  • Blaise Ravelo 1 Nanjing University of Information Science & Technology, Nanjing, China 210044 2 Normandy University, UNIROUEN, ESIGELEC, IRSEEM EA 4353 Technopole du Madrillet, Avenue Galilée, BP 10024, F-76801 Saint Etienne du Rouvray, France
  • Fayu Wan Nanjing University of Information Science & Technology, Nanjing, China 210044
  • Sebastien Lalléchère UCA, CNRS, SIGMA Clermont, Institut Pascal, France
  • Benoit Agnus Av. Blaise Pascal, F-63178 Aubière, WAVE CONCEPTION, 14000 Caen, France

Keywords:

Active microwave circuit, design method, hybrid model, Kron’s formalism, Power Divider (PWD), resistive topology, synthesis relations.

Abstract

A resistive active power divider (RAPWD) design based on Kron’s model is introduced. The threeway RAPWD topology is essentially constructed with a low noise amplifier (LNA) with input and output matching shunt resistances. The RAPWD S-parameter is analytically expressed from the Kron’s method hybridized with the LNA touchstone model. The RAPWD synthesis relation is established in function of the expected gain and matching access. The feasibility of the established Kron’s method modelling is validated with a proof-ofconcept (POC) using the surface mounted monolithic LNA LEE-9+ from mini-circuits. As expected, S-parameters are in good correlation between simulations and computed results from the proposed hybrid method. A relatively flat transmission gain of about 9+/-0.2 dB is realized in the very wide frequency band 0.5 to 4.5 GHz. The broadband tested RAPWD input and output matching and access port isolations are widely better than 10 dB.

Downloads

Download data is not yet available.

References

H. A. Wheeler, “Simple relations derived from a phased-array antenna made of an infinite current sheet,” IEEE Trans. AP, vol. 13, no. 14, pp. 506- 514, July 1965.

G. L. Charvat, “Visualization of a phased array antenna system,” Available Online [2017], https:// hackaday.com/2017/01/05/visualization-of-a-phasedarray-antenna-system/

B. T. Toland, L. D. Gilger, R. Y. Chan, A. S. Barlevy, and S. J. Hamada, “Deployable phased array of reflectors and method of operation,” Patent US 6268835 B1, July 2001.

L.Chen, X.-H. Wang, X.-W. Shi, T.-L. Zhang, and J.-Z. Tong, “Design of a broadband frequency offset van atta array,” PIER Letters, vol. 13, pp. 161-171, 2010.

J. B. West and J. C. Mather, “Phased array antenna interconnect having substrate slat structures,” Patent US 7170446 B1, Jan. 2007.

D. Choudhury, R. Roberts, and U. Karacaoglu, “Wireless antenna array system architecture and methods to achieve 3d beam coverage,” Patent US 20110014878 A1, Jan. 2011.

E. Loew, J. Salazar, P. S. Tsai, J. Vivekanandan, W. Lee, and V. Chandrasekar, “Architecture overview and system performance of the airborne phased array radar (APAR) for atmospheric research,” Proc. 36rd Conf. on Radar Meteor., Breckenrigde, CO, USA, pp. 159-164, 16-20 Sept. 2013.

S. W. Ellingson, “Sensitivity of antenna arrays for long-wavelength radio astronomy,” IEEE Trans. Antennas and Propagation, vol. 59, no. 6, pp. 1855-1863, June 2011.

G. B. Taylor, S. W. Ellingson, N. E. Kassim, et al., “First light for the first station of the long wavelength array,” J. Astronomical Instrumentation, vol. 1, no. 1, 1250004, pp. 1-56, 2012.

S. W. Ellingson, T. E. Clarke, A. Cohen, N. E. Kassim, Y. Pihlstrom, L. J. Rickard, and G. B. Taylor, “The long wavelength array,” Proc. IEEE, vol. 97, no. 8, pp. 1421-1430, Aug. 2009.

M. Harun and S. W. Ellingson, “Design and analysis of low frequency strut-straddling feed arrays for EVLA reflector antennas,” Radio Sci., vol. 46, no. 3, RS0M04, pp. 1-12, June 2011.

S. E. Cutchin, J. H. Simonetti, S. W. Ellingson, A. S. Larracuente, and M. J. Kavic, “Constraining the rate of primordial black-hole explosions and extra dimension scale using a low-frequency radio antenna array,” Pub. Astr. Soc. Pacific, vol. 127, no. 958, pp. 1269-1278, Dec. 2015.

G.-M. Rebeiz and K.-J. Koh, “Silicon RFICs phased arrays,” IEEE Microwave Magazine, vol. 10, no. 3, pp. 96-103, May 2009.

E. Cohen, M. Ruberto, M. Cohen, O. Degani, S. Ravid, and D. Ritter, “A CMOS bidirectional 32- element phased-array transceiver at 60 GHz with LTCC antenna,” IEEE Trans. MTT, vol. 61, no. 3, pp. 1359-1375, Mar. 2013.

A. Natarajan, A. Komijani, X. Guan, A. Babakhani, and A. Hajimiri, “A 77-GHz phased-array transceiver with on-chip antennas in silicon: Transmitter and local LO-path phase shifting,” IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2807-2819, Dec. 2006.

16 Way Power Divider, Combiner, Splitter. Available Online [2017]. http://www.instockwireless.com/ 16way-power-splitter-combiner-divider-app.htm

R. N. Simons and G. E. Ponchak, “Coax-tochannelised coplanar waveguide in-phase N-way, radial power divider,” Electronics Letters, vol. 26, no. 11, pp. 754-756, May 1990.

K. W. Eccleston, “N-way microwave power divider using two-dimensional meta-materials,” Electronics Letters, vol. 42, no. 15, pp. 863-864, July 2006.

H. Chen and Y. X. Zhang, “A novel compact planar six-way power divider using folded and hybridexpanded coupled lines,” PIER, vol. 76, pp. 243- 252, 2007.

L. I. Parad and R. L. Moynihan, “Split-tee power divider,” IEEE Trans. MTT, vol. 13, no. 1, pp. 91- 95, Jan. 1965.

N-way Wilkinson Divider. Microwave EncyclopediaMicrowaves101.com. Available Online [2017]. https://www.microwaves101.com/encyclopedias/n -way-wilkinson-splitters

J.-S. Lim, H.-S. Yang, Y.-T. Lee, S. Kim, K.-S. Seo, and S. Nam, “E-band Wilkinson balun using CPW MMIC technology,” Electronics Letters, vol. 40, no. 14, pp. 879-880, July 2004.

M.-A. Antoniades and G.-V. Eleftheriades, “A broadband Wilkinson balun using microstrip metamaterial lines,” IEEE Antennas and Wireless Propagation Letters, vol. 4, no. 1, pp. 209-212, 2005.

Y. Wu, Y. Liu, S. Li, C. Yu, and X. Liu, “Closedform design method of an N-way dual-band Wilkinson hybrid power divider,” PIER, vol. 101, pp. 97-114, 2010.

U.-H. Park and J.-S. Lim, “A 700- to 2500-MHz microstrip balun using a Wilkinson divider and 3- dB quadrature couplers,” Microwave and Optical Technology Letters, vol. 47, no. 4, pp. 333-335, Sept. 2005.

P. Angeletti and M. Lisi, “Multiport power amplifiers for flexible satellite antennas and payloads,” Microwave Journal, pp. 96-110, May 2010.

B. Ravelo, “Synthesis of N-way active topology for wide-band RF/microwave applications,” International Journal of Electronics, vol. 99, no. 5, pp. 597-608, May 2012.

O. Maurice, A. Reineix, P. Hoffmann, B. Pecqueux, and P. Pouliguen, “A formalism to compute the electromagnetic compatibility of complex networks,” Advances in Applied Science Research, vol. 2, no. 5, pp. 439-448, 2011.

S. Lalléchère, B. Ravelo, and A. Thakur, “Statistical performances of resistive active power splitter,” IoP Conf. Ser.: Mater. Sci. Eng., vol. 120, no. 1, pp. 12015-12018, 2016.

B. Ravelo, O. Maurice, and S. Lalléchère, “Asymmetrical 1:2 Y-tree interconnects modelling with Kron-Branin formalism,” Electronics Letters, vol. 52, no. 14, pp. 1215-1216, July 2016.

B. Ravelo and O. Maurice, “Kron-Branin modelling of Y-Y-tree interconnects for the PCB signal integrity analysis,” IEEE Trans. EMC, vol. 59, no. 2, pp. 411-419, Apr. 2017.

B. Ravelo, O. Maurice, and S. Lalléchère, “Unequal Y-power divider Kron-Branin model,” Proc. of 2017 International Applied Computational Electromagnetics Society (ACES) Symposium, Suzhou, China, pp. 1-2, 1-4 Aug. 2017.

Downloads

Published

2021-07-25

How to Cite

[1]
Blaise Ravelo, Fayu Wan, Sebastien Lalléchère, and Benoit Agnus, “Resistive Active Balanced Power Divider Design with Touchstone and Kron’s Formalism Hybrid Model”, ACES Journal, vol. 33, no. 05, pp. 530–536, Jul. 2021.

Issue

Section

Articles