The Success of GPU Computing in Applied Electromagnetics

Authors

  • A. Capozzoli Università di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione via Claudio 21, I 80125 Napoli, Italy
  • O. Kilic The Catholic University of America Department of Electrical Engineering and Computer Science, Washington, DC
  • C. Curcio Università di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione via Claudio 21, I 80125 Napoli, Italy
  • A. Liseno Università di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione via Claudio 21, I 80125 Napoli, Italy

Keywords:

CUDA, ElectroMagnetic Ray Tracing (EMRT), Finite-Difference Time-Domain (FDTD), Finite Elements Method (FEM), Graphics Processing Units (GPUs), Method of Moments (MoM), OpenCL, parallel programming

Abstract

In the field of electromagnetic modeling, whether it is the complex designs for engineered materials or devices and components integrated within their natural environments, there is a big drive for highly efficient numerical techniques to model the performance of complex structures. This often cannot be achieved by conventional computer systems, but rather through using the so-called high performance computing (HPC) systems that utilize hardware acceleration. We review recent General Purpose Graphics Processing Units (GPGPU) computing strategies introduced in four fields of computational electromagnetics: Finite-Difference Time-Domain (FDTD), Finite Elements Method (FEM), Method of Moments (MoM) and ElectroMagnetic Ray Tracing (EMRT).

Downloads

Download data is not yet available.

References

P. Micikevicius, “Identifying performance limiters,” GTC Technology Conf., 2011.

K.-H. Kim, K. H. Kim, and Q.-H. Park, “Performance analysis and optimization of threedimensional FDTD on GPU using roofline model,” Computer Phys. Commun., vol. 182, no. 6, pp. 1201-1207, June 2011.

P. Micikevicius, “3D finite difference computation on GPUs using CUDA,” Proc. of 2nd Workshop on General Purpose Processing on GPUs, Washington, DC, USA, pp. 79-84, Mar. 8, 2009.

D. De Donno, A. Esposito, L. Tarricone, and L. Catarinucci, “Introduction to GPU computing and CUDA programming: a case study,” IEEE Antennas Prop. Mag., vol. 52, no. 3, pp. 116-122, June 2010.

M. Livesey, J. F. Stack Jr., F. Costen, T. Nanri, N. Nakashima, and S. Fujino, “Development of a CUDA implementation of the 3D FDTD method,” IEEE Antennas Prop. Mag., vol. 54, no. 5, pp. 186- 195, Oct. 2012.

J. I. Toivanen, T. P. Stefanski, N. Kuster, and N. Chavannes, “Comparison of CPML implementations for the GPU-accelerated FDTD solver,” Progr. Electromagn. Res., vol. 19, pp. 61-75, 2011.

R. Shams and P. Sadeghi, “On optimization of finite-difference time-domain (FDTD) computation on heterogeneous and GPU clusters,” J. Parallel Distrib. Comput., vol. 71, no. 4, pp. 584-593, Apr. 2011.

C. Cecka, A. J. Lew, and E. Darve, “Assembly of finite element methods on graphics processors,” Int. J. Numer. Meth., vol. 85, no. 5, pp. 640-669, Feb. 2011.

A. Dziekonski, P. Sypek, A. Lamecki, and M. Mrozowski, “Finite element matrix generation on a GPU,” Progr. in Electromagn. Res., vol. 128, pp. 249-265, 2012.

Z. Fu, T. J. Lewis, R. M. Kirby, and R. T. Whitaker, “Architecting the finite element method pipeline for the GPU,” J. Comput. Appl. Math., vol. 256, pp. 195-211, Feb. 2014.

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Prop., vol. AP-30, no. 3. pp. 409-418, May 1982.

R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole method for the wave equation: A pedestrian prescription,” IEEE Antennas Prop. Mag., vol. 35, no. 3, pp. 7-12, June 1993.

K. Xu, D. Z. Ding, Z. H. Fan, and R. S. Chen, “Multilevel fast multipole algorithm enhanced by GPU parallel technique for electromagnetic scattering problems,” Microw. Opt. Technol. Lett., vol. 52, pp. 502-507, 2010.

Q. Nguyen, V. Dang, O. Kilic, and E. El-Araby, “Parallelizing fast multipole method for large-scale electromagnetic problems using GPU clusters,” IEEE Antennas Wireless Prop. Lett., vol. 12, pp. 868-871, 2013.

V. Dang, Q. Nguyen, and O. Kilic, “Fast multipole method for large-scale electromagnetic scattering problems on GPU cluster and FPGA accelerated platforms,” Applied Comp. Electromag. Soc. Journal, Special Issue, vol. 28, no. 12, pp. 1187- 1198, 2013.

R. L. Wagner, J. Song, and W. C. Chew, “Monte Carlo simulation of electromagnetic scattering from two-dimensional random rough surfaces,” IEEE Trans. Antennas Prop., vol. 45, no. 2, pp. 235-245, 1997.

C. Waltz, K. Sertel, M. A Carr, B. C. Usner, and J. L. Volakis, “Massively parallel fast multipole method solutions of large electromagnetic scattering problems,” IEEE Trans. Antennas Prop., vol. AP-55, no. 6, pp. 1810-1816, 2007.

V. Dang, Q. Nguyen, and O. Kilic, “GPU cluster implementation of FMM-FFT for large-scale electromagnetic problems,” IEEE Antennas Wireless Prop. Lett., vol. 13, pp. 1259-1262, 2014.

Y. Tao, H. Lin, and H. Bao, “GPU-based shooting and bouncing ray method for fast RCS prediction,” IEEE Trans. Antennas Prop., vol. 58, no. 2, pp. 494-502, Feb. 2010.

T. Aila and S. Laine, “Understanding the efficiency of ray traversal on GPUs,” Proc. of the Conf. on High Performance Graphics, Saarbrucken, Germany, pp. 145-150, June 25-27, 2009.

I. Wald and V. Havran, “On building fast KDTrees for ray tracing, and on doing that in O(NlogN),” Proc. of the IEEE Symposium on Interactive Ray Tracing, Salt Lake City, UT, pp. 61-69, Sept. 18-20, 2006.

A. Breglia, A. Capozzoli, C. Curcio, and A. Liseno, “GPU-based shooting and bouncing ray method for fast RCS prediction,” IEEE Antennas Prop. Mag., vol. 57, no. 5, pp. 159-176, Oct. 2015.

A. Breglia, A. Capozzoli, C. Curcio, and A. Liseno, “Why does SBVH outperform KD-tree on parallel platforms?,” Proc. of the IEEE/ACES Int. Conf. on Wireless Inf. Tech. and Syst. and Appl. Comput. Electromagn., Honolulu, HI, pp. 1-2, Mar. 13-18, 2016.

Downloads

Published

2021-07-25

How to Cite

[1]
A. Capozzoli, O. Kilic, C. Curcio, and A. Liseno, “The Success of GPU Computing in Applied Electromagnetics”, ACES Journal, vol. 33, no. 02, pp. 148–151, Jul. 2021.

Issue

Section

Articles