Multilevel Inverse-Based Factorization Preconditioner for Solving Sparse Linear Systems in Electromagnetics
Keywords:
Approximate inverse preconditioners, computational electromagnetics, Krylov subspace methods, sparse matricesAbstract
We introduce an algebraic recursive multilevel approximate inverse-based preconditioner, based on a distributed Schur complement formulation. The proposed preconditioner combines recursive combinatorial algorithms and multilevel mechanisms to maximize sparsity during the factorization.
Downloads
References
Y. Bu, B. Carpentieri, Z. Shen, and T.-Z. Huang, “A hybrid recursive multilevel incomplete factorization preconditioner for solving general linear systems,” Applied Numerical Mathematics, vol. 104, pp. 141-157, 2016.
G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20, pp. 359-392, 1999.
T. Davis, Sparse Matrix Collection, (1994). Available at the URL: http: //www.cise.ufl.edu/ research/sparse/matrices
Y. Saad, Iterative Methods for Sparse Linear Systems. SIAM Publications, 2nd edition, 2003.
Y. Saad and B. Suchomel, “ARMS: An algebraic recursive multilevel solver for general sparse linear systems,” Numer. Linear Algebra Appl., vol. 9, no. 5, pp. 359-378, 2002.
M. Grote and T. Huckle, “Parallel preconditionings with sparse approximate inverses,” SIAM J. Sci. Comput., vol. 18, pp. 838-853, 1997.
M. Bollhoefer, Y. Saad, and O. Schenk, ILUPACK - Preconditioning Software Package, 2010. Available online at the URL: http://ilupack.tu-bs.de.