GPU-based Electromagnetic Optimization of MIMO Channels

Authors

  • Alfonso Breglia Università di Napoli Federico II, Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione via Claudio 21, I 80125 Napoli, Italy
  • Amedeo Capozzoli Università di Napoli Federico II, Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione via Claudio 21, I 80125 Napoli, Italy
  • Claudio Curcio Università di Napoli Federico II, Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione via Claudio 21, I 80125 Napoli, Italy
  • Salvatore Di Donna Università di Napoli Federico II, Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione via Claudio 21, I 80125 Napoli, Italy
  • Angelo Liseno Università di Napoli Federico II, Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione via Claudio 21, I 80125 Napoli, Italy

Keywords:

CUDA, differential evolutionary, Geometrical Optics, GPU, MIMO channel, optimization, singular values

Abstract

Strategies to accelerate MIMO channel capacity optimization on GPUs are outlined. The optimization scheme is dealt with by properly facing the main computational issues. In particular, the propagation environment is described by ultrafast Geometrical Optics (GO), singular values are computed by a very fast scheme and the optimizer is a parallel version of the differential evolutionary algorithm. The unknowns are given proper representations to reduce the number of optimization parameters.

Downloads

Download data is not yet available.

References

G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Personal Commun., vol. 6, no. 3, pp. 311-335, Mar. 1998.

J. Bach Andersen, “Array gain and capacity for known random channels with multiple element arrays at both ends,” IEEE J. Selected Areas Commun., vol. 18, no. 11, pp. 2172-2178, Nov. 2000.

U. Olgun, et al., “Optimization of linear wire antenna arrays to increase MIMO channel using swarm intelligence,” Proc. of the 2nd Europ. Conf. on Antennas Prop., Edinburgh, UK, pp. 1-6, Nov. 11-16, 2007.

M. A. Mangoud, “Optimization of channel capacity for indoor MIMO systems using genetic algorithm,” Progr. Electromagn. Res. C, vol. 7, pp. 137-150, 2009.

E. G. Larsson, et al., “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186-195, Feb. 2014.

N. Noori and H. Oraizi, “Evaluation of MIMO channel capacity in indoor environments using vector parabolic equation method,” Progr. Electromagn. Res. B, vol. 4, pp. 13-25, 2008.

R. Storn and K. Price, “Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces,” J. Global Opt., vol. 11, no. 4, pp. 341-359, Dec. 1997.

A. Capozzoli, et al., “Field sampling and field reconstruction: a new perspective,” Radio Sci., vol. 45, RS6004, pp. 31, 2010, doi: 10.1029/ 2009RS004298.

A. Capozzoli, et al., “FFT & aperiodic arrays with phase-only control and constraints due to superdirectivity, mutual coupling and overall size,” Proc. of the 30th ESA Antenna Workshop on Antennas for Earth Observ., Science, Telecomm. and Navig. Space Missions, Noordwijk, The Netherlands, May 27-30, 2008, CD ROM.

A. Breglia, et al., “Comparison of acceleration data structures for electromagnetic ray tracing purposes on GPUs,” IEEE Antennas Prop. Mag., vol. 57, no. 5, pp. 159-176, Oct. 2015.

A. Capozzoli, et al., “Massive computation of singular values of small matrices on GPUs,” Proc. of the Int. Workshop on Comput. Electromagn., Izmir, Turkey, pp. 36-37, July 1-4, 2015.

G. H. Golub and C. Reinsch, “Singular values decomposition and least squares solutions,” Numer. Math., vol. 14, pp. 403-420, 1970.

Downloads

Published

2021-07-25

How to Cite

[1]
Alfonso Breglia, Amedeo Capozzoli, Claudio Curcio, Salvatore Di Donna, and Angelo Liseno, “GPU-based Electromagnetic Optimization of MIMO Channels”, ACES Journal, vol. 33, no. 02, pp. 172–175, Jul. 2021.

Issue

Section

General Submission