Design of a Jerusalem-Cross Slot Antenna for Wireless Internet Applications

Authors

  • Shu-Huan Wen Department of Communications Engineering Yuan Ze University, Chung-Li, Taoyuan, 32003, Taiwan
  • Hsing-Yi Chen Department of Communications Engineering Yuan Ze University, Chung-Li, Taoyuan, 32003, Taiwan

Keywords:

Antenna gain, dual-resonant frequencies, Jerusalem-cross frequency selective surface, radiation pattern

Abstract

This paper provides a fast solution for the design of a Jerusalem-cross slot antenna for arbitrarily specifying any two operating frequencies. From simulation data and measurement results, the dualresonant frequencies of the Jerusalem-cross slot antenna are found at near 5.8 and 24.0 GHz for the impedance matching with better than 15 dB return loss. It is found that the simulated and measured -10 dB bandwidths are 22.1% and 24.4% at 5.8 GHz respectively. The simulated and measured -10 dB bandwidths are 3.41% and 4.58% at 24.0 GHz, respectively. The simulated and measured results of radiation patterns in the E- and H-plane at frequencies of 5.8 and 24.0 GHz are broad and smooth. The antenna gains obtained by measurement and simulation at frequencies of 5.8 and 24.0 GHz are close to 3.0 and 6.0 dBi, respectively. This Jerusalem-cross slot antenna has a compact size with three dimensions of 22.731×7.577×0.87 mm which can be fabricated at a low cost using the standard PCB process. The compact patch antenna is suitable for applications in unlicensed frequency bands of 5.8 and 24 GHz for wireless internet applications including RFID systems, medical devices, and the internet of things (IoT).

Downloads

Download data is not yet available.

References

D. Evans, The Internet of Things: How the Next Evolution of the Internet Is Changing Everything, White Paper, Apr. 2011 [Online]. Available: https://www.cisco.com/c/dam/en_us/about/ac79/d ocs/innov/IoT_IBSG_0411FINAL.pdf

K. L. Wong and K. P. Yang, “Compact dual frequency microstrip antenna with a pair of bend slot,” Electronic Lett., vol. 34, pp. 225-226, 1988.

P. C. Prasad and N. Chattoraj, “Design of compact Ku band microstrip antenna for satellite communication,” Communications and Signal Processing (ICCSP), 2013 International Conference, pp. 196- 200, Apr. 3-5, 2013.

R. Q. Lee, K. F. Lee, and J. Bobinchak, “Characteristics of a two-layer electromagnetically coupled rectangular patch antenna,” Electron. Lett., vol. 23, pp. 1070-1072, 1987.

M. Rubelj, P. F. Wahid, and C. G. Christodoulou, “A microstrip antenna array for direct broadcast satellite receivers,” Microw. Opt. Technol. Lett., vol. 15, no. 2, pp. 68-72, 1997.

B. L. Ooi, “A double-II stub proximity feed U-slot patch antenna,” IEEE Trans. Antennas Propag., vol. 52, no. 9, pp. 2491-2496, Sep. 2004.

R. Chair, C. L. Mak, K. F. Lee, K. M. Luk, and A. Kishk, “Minuature wide-band half U-slot and half E-shaped patch antenna,” IEEE Trans. Antennas Propag., vol. 53, no. 8, pp. 26452652, Aug. 2005.

U. H. Park, H. S. Noh, S. H. Son, K. H. Lee, and S. I. Jeon, “A novel mobile antenna for Ku-band satellite communications,” ETRI J., vol. 27, no. 3, pp. 243-249, 2005

R. Saluja, et al., “Analysis of bluetooth patch antenna with different feeding techniques using simulation and optimization,” in Proc. International Conference on Recent Advances in Microwave Theory and Applications, pp. 742-744, 2008.

V. V. Reddy and R. Rana, “Design of linearly polarized rectangular microstrip patch antenna using IE3D/PSO,” Bachelor thesis, Department of Electronics and Communication Engineering, National Institute of Technology Rourkela, Rourkela, 2009.

U. K. Revankar and A. Kumar, “Broadband stacked three-layer circular microstrip antenna arrays,” Electron. Lett., vol. 28, no. 21, pp. 1995-1997, 1992.

E. Nishiyama, S. Egashira, and A. Sakitani, “Stacked circular polarized microstrip antenna with wide band and high gain,” Proc. IEEE AP-S Int. Symp. and URSI Radio Science Meeting, pp. 1923-1926, 1992.

S. Egashira, E. Nishiyama, and A. Sakitani, “Stacked microstrip antenna with wide band and high gain,” IEEE Trans. Antennas Propag., vol. 44, no. 11, pp. 1533-1534, 1996.

H.-S. Noh and U.-H. Park, “Three-stacked microstrip patch array antenna for both transmitting and receiving,” IEE Proc.-Microw. Antennas Propag., vol. 153, no. 4, pp. 385-388, Aug. 2006.

K. Agarwal, Nasimuddin, and A. Alphones, “Triple band compact circularly polarised stacked microstrip antenna over reactive impedance meta-surface for GPS applications,” IET Microw. Antennas Propag., vol. 8, no. 13, pp. 1057-1065, 2014.

Y. Gao, R. Ma, Y. Wang, Q. Zhang, and C. Parini, “Stacked patch antenna with dual-polarization and low mutual coupling for massive MIMO,” IEEE Trans. Antennas Propag., vol. 64, no. 10, pp. 4544- 4549, Oct. 2016.

H. Y. Chen and Y. Tao, “Bandwidth enhancement of a U-Slot patch antenna using dual-band frequency selective surface with double rectangular ring elements,” Microw. Opt. Technol. Lett., vol. 53, no. 7, pp. 1547-1553, July 2011.

H. Y. Chen and Y. Tao, “Performance improvement of a U-slot patch antenna using a dual-band frequency selective surface with modified Jerusalem cross elements,” IEEE Trans. Antennas Propag., vol. 59, no. 9, pp. 3482-3486, Sep. 2011.

D. Nashaat, H. A. Elsadek, E. A. Abdallah, M. F. Iskander, and H. M. El Hennawy, “Ultrawide bandwidth 2 2 microstrip patch array antenna using electromagnetic band-gap structure (EBG),” IEEE Trans. Antennas Propag., vol. 59, no. 5, pp. 1528- 1534, May 2011.

B. A. Munk, R. J. Luebbers, and R. D. Fulton, “Transmission through a 2-layer array of loaded slots,” IEEE Trans. Antennas Propag., vol. AP22, no. 6, pp. 804-809, Nov. 1974.

M. A. Hiranandani, A. B. Yakovlev and A. A. Kishk, “Artificial magnetic conductors realized by frequency-selective surfaces on a grounded dielectric slab for antenna applications,” IEE Pro.- Microw. Antennas Propag., vol. 153, no. 5, pp. 487-493, Oct. 2006.

F. Yang and Y. Rahmat-Samii, “Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications,” IEEE Trans. Antennas Propag., vol. 51, no. 10, pp. 2691-2703, Oct. 2003.

J. Liang and H. Y. David Yang, “Radiation characteristics of a microstrip patch over an electromagnetic bandgap surface,” IEEE Trans. Antennas Propag., vol. 55, no. 6, pp. 1691-1697, June 2007.

D. Sievenpiper, L. Zhang, R. F. Jimenez Broas, N. G. Alex´opolous, and E. Yablonovitch, “Highimpedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 11, pp. 2059-2074, Nov. 1999.

Y. Zhang, J. von Hagen, M. Younis, C. Fischer, and W. Wiesbeck, “Planar artificial magnetic conductors and patch antennas,” IEEE Trans. Antennas Propag., vol. 51, no. 10, pp. 2704-2712, Oct. 2003.

X. L. Bao, G. Ruvio, M. J. Ammann, and M. John, “A novel GPS patch antenna on a fractal hiimpedance surface substrate,” IEEE Antennas Wireless Propag. Lett., vol. 5, pp. 323-326, 2006.

H. Mosallaei, and K. Sarabandi, “Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate,” IEEE Trans. Antennas Propag., vol. 52, no. 9, pp. 2403-2414, Sep. 2004.

R. F. J. Broas, D. F. Sievenpiper, and E. Yablonovitch, “A high-impedance ground plane applied to a cellphone handset geometry,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 7, pp. 1262-1265, July 2001.

A. P. Feresidis, G. Goussetis, S. Wang, and J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile highgain planar antennas,” IEEE Trans. Antennas Propag., vol. 53, no. 1, pp. 209-215, Jan. 2005.

H. Li, S. Khan, J. Liu, and S. He, “Parametric analysis of Sierpinski-like fractal patch antenna for compact and dual band WLAN applications,” Microw. Opt. Technol. Lett., vol. 51, no. 1, pp. 36- 40, Jan. 2009.

M. Hosseini and S. Bashir, “A novel circularly polarized antenna based on an artificial ground plane,” Progress Electromagn. Research Lett., vol. 5, pp. 13-22, 2008.

S. Malisuwan, J. Sivaraks, N. Madan, and N. Suriyakrai, “Design of microstrip patch antenna for Ku-band satellite communication applications,” Int. J. Comput. Commun. Eng., vol. 3, no. 6, pp. 413- 416, Nov. 2014.

J. Wargo, Unlicensed 24 GHz Point to Point Wireless Backhaul Option, May 2010. [Online]. Available: http://www.aowireless.com

SAF Tehnika JSC, Highspeed Internet Provider Selects SAF Freemile 24 GHz to Extend Its Network in Hawaii. Jun. 2012. [Online]. Available: http://www.openpr.com/news/226290/

F. Alimenti, P. Mezzanotte, G. Tasselli, A. Battistini, V. Palazzari, and L. Roselli, “Development of lowcost 24-GHz circuits exploiting system-in-package SiP approach and commercial PCB technology,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 2, no. 8, pp. 1265-1274, 2012.

M. Poggiani, F. Alimenti, P. Mezzanotte, M. Virili, C. Mariotti, G. Orecchini, and L. Roselli, “24-GHz patch antenna array on cellulose-based materials for green wireless internet applications,” IET Sci. Meas. Technol., vol. 8, no. 6, pp. 342-349, 2014.

H. Y. Chen, T. H. Lin, and P. K. Li, “Fast design of Jerusalem-cross parameters by equivalent circuit model and least-square curve fitting technique,” Appl. Comput. Electromagn. Soc. J., vol. 31, no. 4, pp. 455-467, 2016.

H. Y. Chen and S. H. Wen, “An Empirical formula for resonant frequency shift due to Jerusalem-cross FSS with substrate on one side,” Appl. Comput. Electromagn. Soc. J., submitted, Nov. 16, 2016.

Downloads

Published

2021-07-27

How to Cite

[1]
Shu-Huan Wen and Hsing-Yi Chen, “Design of a Jerusalem-Cross Slot Antenna for Wireless Internet Applications”, ACES Journal, vol. 33, no. 01, pp. 15–22, Jul. 2021.

Issue

Section

Articles