Radio Frequency Attenuation by Rocket Plume From Ground Study to In-flight Prediction

Authors

  • Éva Dieudonné 1 CentraleSupélec, Univ. Paris-Sud, Université Paris-Saclay Sorbonne Universités, UPMC Univ Paris 06 3 & 11, rue Joliot-Curie, Plateau de Moulon 91192 Gif-sur-Yvette CEDEX, France , 2 CNES-DLA | Centre National d'Études Spatiales - Direction des lanceurs 52, rue Jacques Hillairet 75612 Paris CEDEX, France
  • Abelin Kameni CentraleSupélec, Univ. Paris-Sud, Université Paris-Saclay Sorbonne Universités, UPMC Univ Paris 06 3 & 11, rue Joliot-Curie, Plateau de Moulon 91192 Gif-sur-Yvette CEDEX, France
  • Lionel Pichon CentraleSupélec, Univ. Paris-Sud, Université Paris-Saclay Sorbonne Universités, UPMC Univ Paris 06 3 & 11, rue Joliot-Curie, Plateau de Moulon 91192 Gif-sur-Yvette CEDEX, France
  • David Monchaux CNES-DLA | Centre National d'Études Spatiales - Direction des lanceurs 52, rue Jacques Hillairet 75612 Paris CEDEX, France

Keywords:

Asymptotic method, electromagnetic, finite element, plasma, rocket plume, scattering

Abstract

Radio frequency communication between the space launcher and the mission control are unusually disturbed by the exhaust plume present in rocket engines. This paper presents the computation of radio wave propagation through the exhaust plume. Thus, frequencydomain finite element method and time-domain discontinuous Galerkin method are implemented for computations in case of a ground domain experiments. Numerical results compared to those obtained from ground experiment show good approximation of the propagation through the plasma over a wide frequency band. For the launcher in flight, an asymptotic method is proposed and has the advantage to give a fast evaluation of the scattering solution. In this case, the exhaust plume area is considered as a perfectly conducting trapezium whose parameters are extracted from the distribution of the plasma permittivity. Results related to the asymptotic method appear to be in good agreement with results based on the full wave approaches.

Downloads

Download data is not yet available.

References

R. R. Mikatarian, C. J. Kau, and H. S. Pergament, “Fast computer program for nonequilibrium rocket plume predictions,” AeroChem TP-282, 1972.

L. D. Smoot and D. L. Underwood, “Prediction of microwave attenuation characteristics of rocket exhausts,” AIAA 6th Solid Propellant Rocket Conference, 65-181, 1965.

L. D. Smoot and T. J. Seliga, “Rocket exhaust plume radar attenuation and amplitude/phase noise,” J. Spacecraft, 4, pp. 774-780, 1967.

J. A. Blevins, R. A. Frederick, and H. W. Coleman, “An assessment of microwave measurement techniques in rocket exhaust applications,” 32nd Aerospace Sciences Meeting & Exhibit, 94-0671, 1994.

K. Kinefuchi, K. Okita, I. Funaki, and T. Abe, “Prediction of in-flight radio frequency attenuation by a rocket plume by applying CFD/FDTD coupling,” 49th AIAA/ASME/SAE/ ZSEE Joint Propulsion Conference, 2013-3790, 2013.

L. Glen McMillion, “A simple method for predicting RF attenuation through a rocket exhaust plume,” U.S. Army Research Office, 1997.

B. Van der Veek, S. Chintalapati, D. R. Kirk, H. Gutierrez, and R. F. Bun, “Modeling and validation of Ku-band signal attenuation through rocket plumes,” Journal of Spacecraft and Rockets, 50, pp. 992-1001, 2013.

B. Fromentin-Denozière, D. Gueyffier, and J. Simon, “Numerical modelling of the radar signature of rocket exhaust plumes,” International Conference on Electromagnetics in Advanced Applications (ICEAA 2012), pp. 400-403, 2012.

K. Kinefuchi, I. Funaki, and T. Abe, “Frequencydependent FDTD simulation of the interaction of microwaves with rocket-plume,”IEEE Transactions on Antennas and Propagation, 58, pp. 3282-3288, 2010.

K. Kinefuchi, I. Funaki, H. Ogawa, T. Kato, S. Tachikawa, T. Shimada, and T. Abe, “Investigation of micromawe attenuation by solid rocket exhausts,” 47th AIAA Aerospace Science Meeting and Exhibit, 2009-1386, 2009.

K. Kinefuchi, I. Funaki, and T. Abe, “Prediction of in-flight frequency attenuation by rocket plume applying diffraction theories,” Journal of Spacecraft and Rockets, 50, pp. 150-158, 2013.

J. H. Whitteker, “Diffraction over flat-topped terrain obstacle,” Proceedings IEE, 137, 1990.

G. Millington, R. Hewitt, and F. S. Immirzi, “Double knife-edge diffraction in field-strength predictions,” Proceedings IEE, 507, 1962.

G. Millington, R. Hewitt, and F. S. Immirzi, “The Fresnel surface integral,” Proceedings IEE, 508, 1962.

K. M. Mphale, P. V. C. Luhanga, and M. L. Heron, “Microwave attenuation in forest fuel flames,” Combustion and Flame, 154, pp. 728-739, 2008.

B. Gustavsen and A. Semlyen, “Rational approx.- imation of frequency domain responses by vector fitting,” IEEE Trans. Power Delivery, 14, pp. 1052-1061, 1999.

M. Boubekeur, A. Kameni, L. Bernard, A. Modave, and L Pichon, “3-D modeling of thin sheets in the discontinuous Galerkin method for transient scattering analysis,” IEEE Trans. Magn., 50, pp. 493-496, 2014.

A. Modave, A. Kameni, J. Lambrechts, E. Delhez, L. Pichon, and C. Geuzaine, “An optimum PML for scattering problems in the time domain,” Eur. Phys. J. Appl. Phys., 64, pp. 24502, 2013.

É. Dieudonné, N. Malléjac, C. Amra, and S. Enoch, “Surface and bulk scattering by magnetic and dielectric inhomogeneities: A first-order method,” J. Opt. Soc. Am. A, 30, pp. 1772-1779, 2013.

J. Van Bladel, Electromagnetic Fields. John Wiley & Sons, pp. 743, 2007.

Downloads

Published

2021-07-30

How to Cite

[1]
Éva Dieudonné, Abelin Kameni, Lionel Pichon, and David Monchaux, “Radio Frequency Attenuation by Rocket Plume From Ground Study to In-flight Prediction”, ACES Journal, vol. 32, no. 11, pp. 1048–1055, Jul. 2021.

Issue

Section

Articles