Double Lens Antennas in Millimeter-Wave Automotive Radar Sensors

Authors

  • Nurdan Sönmez Department of Electronics and Communications Engineering Yıldız Technical University, 34220, Istanbul, Turkey
  • Fikret Tokan Department of Electronics and Communications Engineering Yıldız Technical University, 34220, Istanbul, Turkey
  • Nurhan Türker Tokan Department of Electronics and Communications Engineering Yıldız Technical University, 34220, Istanbul, Turkey

Keywords:

Automotive radar, double lens, millimeterwave antennas, millimeter-wave radar, multiple-lens antennas

Abstract

In the near future, all newly introduced cars will be equipped with radar based systems enabling safer and more convenient driving. The performance of such systems is directly related with the performance of the antenna front end. Recently, double lens focusing system is proposed. With its high broadside directivity and low scan loss over a wide angular range, it can be considered as a good candidate for future long range radars. In this paper, effects of materials on beam scanning performance of double lens antennas are investigated for millimeter wave radars.

Downloads

Download data is not yet available.

References

W. Menzel, Antennas in Automobile Radar, in Handbook of Antenna Technologies. Springer Sci. Business Med., pp. 2475-2500, 2016.

H. L. Blöecher, M. Andres, C. Fischer, A. Sailer, M. Goppelt, and J. Dickmann, “Impact of system parameter selection on radar sensor performance in automotive applications,”Adv. Radio Sci., vol. 10, pp. 33-37, 2012.

C. Sturm, G. Li, G. Heinrich, and U. Lübbert, “79 GHz wideband fast chirp automotive radar sensor with agile bandwidth,” IEEE MTT-S Int. Conf. on Microwaves for Int. Mobility (ICMIM), San Diego, CA, pp. 1-3, May 2016.

W. Menzel and A. Moebius, “Antenna concepts for millimeter-wave automotive radar sensors,” Proc. of the IEEE, vol. 100, no. 7, pp. 2372-2379, July 2012.

J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band,” IEEE Trans. on Microwave Theory and Tech., vol. 60, no. 3, pp. 845-860, Mar. 2012.

T. Binzer, M. Klar, and V. Gross, “Development of 77 GHz radar lens antennas for automotive applications based on given requirements,” Proc. Int. Conf. Antennas, Munich, Germany, pp. 205- 209, Mar. 2007.

M. Kishida, K. Ohguchi, and M. Shono, “79 GHz band high resolution milimeter wave radar,” Fujitsu Sci. Tech., vol. 51, no. 4, pp. 55-59, Oct. 2015.

M. Steinhauer, H. O. Ruo, H. Irion, and W. Menzel, “Millimeter-wave radar sensor based on a transceiver array for automotive applications,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 2, pp. 261-269, Feb. 2008.

C. Lievers, W. van Rossum, A. Maas, and A. Huizing, “Digital beam forming on transmit and receive with an AESA FMCW radar,” Proc. Eur. Radar Conf., Munich, Germany, pp. 47-50, Oct. 2007.

I. Sarkas, M. Khanpour, A. Tomkins, P. Chevalier, P. Garcia, and S. Voinigescu, “W-band 65-nm CMOS and SiGeBiCMOS transmitter and receiver with lumped I-Q phase shifters,” Proc. IEEE Radio Freq. Integr. Circuits (RFIC) Symp., Boston, MA, pp. 441-444, June 2009.

C. Wagner, M. Hartmann, A. Stelzer, and H. Jaeger, “A fully differential 77 GHz active IQ modulator in a silicon-germanium technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, pp. 362-364, May 2008.

N. T. Nguyen, A. Boriskin, L. Le Coq, and R. Sauleau, “Improvement of the scanning performance of the extended hemispherical integrated lens antenna using a double lens focusing system,” IEEE Trans. on Ant. Propag., vol. 64, pp. 3698- 3702, May 2016.

X. Wu and G. V. Eleftheriades, “Two-lens and lens-fed reflector antenna systems for mm-wave wireless communications,” Int. Symp. Ant. and Propag. Soc., Toronto, Canada, pp. 660-663, July 2000.

K. Komoshvili, B. Kapilevich, B. Litvak, and Y. Nagar, “Two lens-antenna system for mm-wave biological experiments systems,” IEEE Int. Conf. on Microwaves, Comm., Ant. and Electronics Sys., Ariel, Israel, pp. 1-4, Dec. 2011.

N. T. Sönmez and N. T. Tokan, “Effects of antireflective coatings on scanning performance of millimetre-wave lenses,” IET Microw. Antennas Propag., vol. 10, no. 14, pp. 1-7, Oct. 2016.

Y. Tajima and Y. Yamada, “Simulations of a shaped dielectric lens antenna by FEKO,” Applied Computational Society Journal, vol. 24, no. 4, pp. 419-426, Aug. 2009.

J. R. Costa, C. A. Fernandes, G. Godi, R. Sauleau, L. Le Coq, and H. Legay, “Compact Ka-band lens antennas for LEO satellites,” IEEE Trans. Antennas Propag., vol. 56, no. 51, pp. 1251-1258, May 2008.

F. Tokan, “Optimization-based matching layer design for broadband dielectric lens antennas,” Applied Computational Society Journal, vol. 29, no. 6, pp. 499-507, 2014.

N. T. Nguyen, N. Delhote, M. Ettorre, D. Baillargeat, L. Le Coq, and R. Sauleau, “Design and characterization of 60-GHz integrated lens antennas fabricated through ceramic stereolithography,” IEEE Trans. Antennas Propag., vol. 58, no. 8, pp. 2757- 2762, Aug. 2010.

K. F. Brakora, J. Halloran, and K. Sarabandi, “Design of 3-D monolithic MMW antennas using ceramic stereolithography,” IEEE Trans. Antennas Propag., vol. 55, no. 3, pp. 790-797, Mar. 2007.

J. S. Silva, M. G. Vigueras, T. Debogovic´, J. R. Costa, C. A. Fernandes, and J. R. Mosig, “Stereolithography based antennas for satellite communications in Ka-band,” Proceedings of the IEEE, vol. 105, no. 4, Apr. 2017.

Downloads

Published

2021-07-30

How to Cite

[1]
Nurdan Sönmez, Fikret Tokan, and Nurhan Türker Tokan, “Double Lens Antennas in Millimeter-Wave Automotive Radar Sensors”, ACES Journal, vol. 32, no. 10, pp. 901–907, Jul. 2021.

Issue

Section

Articles