Numerical Simulation of High Electron Mobility Transistors based on the Spectral Element Method

Authors

  • Feng Li Department of Electrical and Computer Engineering University of Idaho, Moscow, ID 83844, USA
  • Qing H. Liu Department of Electrical and Computer Engineering Duke University, Durham, NC 27708, USA
  • David P. Klemer K2 BioMicrosystems, LLC, Geneva, IL 60134, USA

Keywords:

Heterojunction, Schrödinger equation, spectral element method, transistor

Abstract

The spectral element method (SEM) is implemented for the numerical simulation of high electron mobility transistors (HEMTs) through a selfconsistent solution of the Schrödinger-Poisson equations. The electron conduction band structure and electron density distribution are calculated and plotted, and results compared to those based on methods utilizing a finite-difference approach. Simulation accuracy and efficiency are analyzed and compared with traditional finite difference method (FDM). DC current-voltage (I-V) characteristics for the HEMT structure are simulated, based on a quasi-2D current model. The SEM approach offers advantages in speed and efficiency over FDM, while yielding results which conform well to reported experimental results. These advantages are particularly important for compound heterojunction devices with complex material profiles, for which FDM methods may be inefficient and computationally slow.

Downloads

Download data is not yet available.

References

I.-H. Tan, G. L. Snider, L. D. Chang, and E. L. Hu, “A self-consistent solution of Schrödinger-Poisson equations using a nonuniform mesh,” J. Appl. Phys., vol. 68, no. 8, pp. 4071-4076, Oct. 1990.

S. Lapaul, A. de Lustrac, and F. Bouillault, “Solving the Poisson’s and Schrödinger’s equations to calculate the electron states in quantum nanostructures using the finite element method,” IEEE Trans. Magnetics, vol. 32, no. 3, pp. 1018-1021, May 1996.

E. A. B. Cole, C. M. Snowden, and T. Boettcher, “Solution of the coupled Poisson-Schrödinger equations using the multigrid method,” Int. J. Numer. Model E. L., vol. 10, no. 2, pp. 121-136, Mar. 1997.

C. Cheng, J.-H. Lee, H. Z. Massoud, and Q. H. Liu, “3-D self-consistent Schrödinger-Poisson solver: The spectral element method,” J. Comput. Electron., vol. 7, no. 3, pp. 337-341, Feb. 2008.

A. Abou-Elnour and K. Schuenemann, “A comparison between different numerical methods used to solve Poisson’s and Schrödinger’s equations in semiconductor heterostructures,” J. Appl. Phys., vol. 74, no. 5, pp. 3273-3276, Sep. 1993.

H. C. Casey, Devices for Integrated Circuits: Silicon and III-V Compound Semiconductors. Wiley, 1998.

Q. H. Liu, C. Cheng, and H. Z. Massoud, “The spectral grid method: a novel fast Schrödingerequation solver for semiconductor nanodevice simulation,” IEEE Trans. Comput. Aid. Des. Integr. Circ. Syst., vol. 23, no. 8, pp. 1200-1208, Aug. 2004.

F. Sacconi, A. Di Carlo, P. Lugli, and H. Morkoc, “Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs,” IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 450- 457, Mar. 2001.

J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys., vol. 53, no. 50, pp. 123-181, Oct. 1982.

A. Thomasian, A. A. Rezazadeh, and L. G. Hipwood, “Observation and mechanism of kink effect in depletion-mode AlGaAs/GaAs and AlGaas/GaInAs HEMTs,” Electron Lett., vol. 25, no. 5, pp. 351-353, Mar. 1989.

K. A. Christianson and W. T. Anderson, “Determination of AlGaAs/GaAs HEMT parasitic resistance,” Solid State Electron., vol. 39, no. 12, pp. 1757-1760, Dec. 1996.

K. L. Priddy, D. R. Kitchen, J. A. Grzyb, C. W. Litton, T. S. Henderson, C.-K. Peng, W. F. K. Kopp, and H. Morkoc, “Design of enhanced Schottky-barrier AlGaAs/GaAs MODFET’s using highly doped p surface layers,” IEEE Trans. Electron Devices, vol. 34, no. 2, pp. 175-180, Aug. 2005.

K. L. Priddy, D. R. Kitchen, J. A. Grzyb, C. W. Litton, T. S. Henderson, C. K. Peng, W. F. K. Kopp, and H. Morkoc, “Design of enhanced Schottky-barrier AlGaAs/GaAs MODFET’s using highly doped p surface layers,” IEEE Trans. Electron Device, vol. 34, no. 2, pp. 175-180, 2005.

Downloads

Published

2021-08-08

How to Cite

[1]
Feng Li, Qing H. Liu, and David P. Klemer, “Numerical Simulation of High Electron Mobility Transistors based on the Spectral Element Method”, ACES Journal, vol. 31, no. 10, pp. 1144–1150, Aug. 2021.

Issue

Section

Articles