DOA Estimation for Unequal Power Sources using Extremely Low Profile Aperture Coupled Microstrip Antenna

Authors

  • Yong Han School of Electronics and Information Engineering Harbin Institute of Technology, Weihai, 264209, China
  • Qingyuan Fang School of Information Science and Technology Shijiazhuang Tiedao University, Shijiazhuang, 050043, China
  • Lizhong Song School of Electronics and Information Engineering Harbin Institute of Technology, Weihai, 264209, China
  • Fenggang Yan School of Electronics and Information Engineering Harbin Institute of Technology, Weihai, 264209, China
  • Xiaolin Qiao School of Electronics and Information Engineering Harbin Institute of Technology, Weihai, 264209, China
  • Shanna Zhuang School of Information Science and Technology Shijiazhuang Tiedao University, Shijiazhuang, 050043, China

Keywords:

Aperture coupled antenna, DOA estimation, H-shaped coupling slot, low profile, passive radar, unequal power sources

Abstract

In this paper, an aperture coupled microstrip antenna with extremely low profile (0.022?c, ?c is the wavelength of the center frequency) is proposed and then applied to direction of arrival (DOA) estimation for unequal power sources. Two serial coupling slots resonating at connected frequencies are employed to expand the bandwidth of this microstrip antenna with extremely low profile. Compared with the microstrip antenna fed by a single coupling slot, the bandwidth is increased to 1.37% by using two serial coupling slots. Measurements of the antenna prototype exhibit 6.63% bandwidth (S11 < ?10 dB) and agree well with the simulation results. The measured antenna gain is 5.79 dBi, and the 3 dB beam width is 56° and 112° in the E-plane and H-plane, respectively. In addition, the crosspolarization level of the prototype is ?20 dB down from the co-polarization. Finally, the proposed antenna is applied in the DOA estimation for unequal power sources. Simulation results confirmed that the proposed antenna is effective and can be used in passive radar application.

Downloads

Download data is not yet available.

References

S. Gao, L. W. Li, M. S. Leong, and T. S. Yeo, “A broad-band dual-polarized microstrip patch antenna with aperture coupling,” IEEE Trans. Antennas Propagat., vol. 51, no. 4, pp. 898-900, 2003.

C. J. Meagher and S. K. Sharma, “A wideband aperture-coupled microstrip patch antenna employing spaced dielectric cover for enhanced gain performance,” IEEE Trans. Antennas Propagat., vol. 58, no. 9, pp. 2802-2810, 2010.

F. Yang, X. X. Zhang, X. Ye, and Y Rahmat-Samii, “Wide-band E-shaped patch antennas for wireless communications,” IEEE Trans. Antennas Propagat., vol.49, no. 7, pp. 1094-1100, 2001.

H. S. Shin and N. Kim. “Wideband and high-gain one-patch microstrip antenna coupled with Hshaped aperture,” Electron. Lett., vol.38, no.19, pp. 1072-1073, 2002.

K. L. Wong, H. C. Tung, and T. W. Chiou, “Broadband dual-polarized aperture-coupled patch antennas with modified H-shaped coupling slots,” IEEE Trans. Antennas Propagat., vol. 50, no. 2, pp. 188-191, 2002.

K. F. Lee and K. F. Tong, “Microstrip patch antennas-Basic characteristics and some recent advances,” Proc. IEEE, vol. 100, no. 7, pp. 2169- 2180, 2012.

S. Xiao, Z. Shao, B. Z. Wang, M. T. Zhou, and M. Fujise, “Design of low-profile microstrip antenna with enhanced bandwidth and reduced size,” IEEE Trans. Antennas Propagat., vol. 54, no. 5, pp. 1594-1599, 2006.

M. M. Honari, A. Abdipour, and G. Moradi, “Bandwidth and gain enhancement of an aperture antenna with modified ring patch,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 1413-1416, 2011.

B. K. Ang and B. K. Chung, “A wideband Eshaped microstrip patch antenna for 5-6 GHz wireless communications,” Prog. Electromagn. Res., vol. 75, pp. 397-407, 2007.

A. Khidre, K. F. Lee, A. Z. Elsherbeni, and F. Yang, “Wide band dual-beam U-slot microstrip antenna,” IEEE Trans. Antennas Propagat., vol. 61, no. 3, pp. 1415-1418, 2013.

T. Y. Yang, W. Hong, and Y. Zhang, “Wideband high‐gain low‐profile dual‐polarized stacked patch antenna array with parasitic elements,” Microw. Opt. Techn. Let., vol. 57, no. 9, pp. 2012- 2016, 2015.

C. Deng, “Wideband microstrip antennas loaded by ring resonators,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 1665-1668, 2013.

M. Barba, “A high-isolation, wideband and duallinear polarization patch antenna,” IEEE Trans. Antennas Propagat., vol. 56, no. 5, pp. 1472-1476, 2008.

A. A. Serra, P. Nepa, G. Manara, G. Tribellini, and S. Cioci, “A wide-band dual-polarized stacked patch antenna,” IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 141-143, 2007.

A. P. Feresidis, G. Goussetis, S. Wang, and J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile highgain planar antennas,” IEEE Trans. Antennas Propagat., vol. 53, no. 1, pp. 209-215, 2005.

J. Liang and H. Y. D. Yang, “Radiation characteristics of a microstrip patch over an electromagnetic bandgap surface,” IEEE Trans. Antennas Propagat., vol. 55, no. 6, pp. 1691-1697, 2007.

K. Gotsis, K. Siakavara, and J. N. Sahalos, “On the direction of arrival (DoA) estimation for a switched-beam antenna system using neural networks,” IEEE Trans. Antennas Propagat., vol. 57, no. 5, pp. 1399-1411, 2009.

N. J. G. Fonseca, M. Coudyser, J. J. Laurin, and J. Brault, “On the design of a compact neural network-based DOA estimation system,” IEEE Trans. Antennas Propagat., vol. 58, no. 2, pp. 357- 366, 2010.

M. Coulombe, S. F. Koodiani, and C. Caloz, “Compact elongated mushroom (EM)-EBG structure for enhancement of patch antenna array performances,” IEEE Trans. Antennas Propagat., vol. 58, no. 4, pp. 1076-1086, 2010.

R O. Schmidt. Multiple emitter location and signal parameter estimation [J], IEEE Trans. Antennas Propagat., vol. 34, no. 3, pp. 276-280, 1986.

F. G. Yan, M. Jin, S. Liu, and X. L. Qiao, “Realvalued MUSIC for efficient direction estimation with arbitrary array geometries,” IEEE Trans. Signal Proces., vol. 62, no. 6, pp. 1548-1560, 2014.

C. H. Niow and H. T. Hui, “Improved noise modeling with mutual coupling in receiving antenna arrays for direction-of-arrival estimation,” IEEE Trans. Wireless Commu., vol. 11, no. 4, pp. 1616-1621, 2012.

Q. Fang, Y. Han, M. Jin, and X. L. Qiao, “Joint DOA and polarization estimation for unequal power sources,” International Antenna. Propagat., 2015.

M. L. McCloud and L. L Scharf, “A new subspace identification algorithm for high-resolution DOA estimation,” IEEE Trans. Antennas Propagat., vol. 50, no. 10, pp. 1382-1390, 2002.

A. Olfat and S. Nader-Esfahani, “A new signal subspace processing for DOA estimation,” IEEE Proc. Microwave Antenna Propagat., vol. 84, no. 4, pp. 721-728, 2004.

B. K. Ang and B. K. Chung, “A wideband Eshaped microstrip patch antenna for 5-6 GHz wireless communications,” Prog. Electromagn. Res., vol. 75, pp. 397-407, 2007.

K. F. Lee, K. M. Luk, K. F. Tong, S. M. Shum, T. Huynh, and R. Q. Lee, “Experimental and simulation studies of the coaxially fed U-slot rectangular patch antenna,” Proc. IEEE, vol. 144, no. 5, pp. 354-358, 1997.

M. Coulombe, S. F. Koodiani, and C. Caloz, “Compact elongated mushroom (EM)-EBG structure for enhancement of patch antenna array performances,” IEEE Trans. Antennas Propagat., vol. 58, no.4, pp. 1076-1086, 2010.

Downloads

Published

2021-08-10

How to Cite

[1]
Yong Han, Qingyuan Fang, Lizhong Song, Fenggang Yan, Xiaolin Qiao, and Shanna Zhuang, “DOA Estimation for Unequal Power Sources using Extremely Low Profile Aperture Coupled Microstrip Antenna”, ACES Journal, vol. 31, no. 09, pp. 1100–1109, Aug. 2021.

Issue

Section

General Submission