On morphing wing for roll augmentation via material fitness using surrogate modelling

Authors

  • Narcis M. Ursache Department of Mechanical, Aerospace and Civil Engineering, Brunel University, London UB8 3PH, UK
  • Neil W. Bressloff Computational Engineering and Design, Southampton University, Southampton SO17 1BJ, UK
  • Andy J. Keane Department of Mechanical, Aerospace and Civil Engineering, Brunel University, London UB8 3PH, UK

Keywords:

multi-disciplinary optimisation, material modelling, surrogate modelling

Abstract

This research is concerned with the design and analysis of a multi-camber morphing wing that meets prescribed aerodynamic configurations according to the design intent. A global optimisation paradigm is used towards morphing wing that interlinks aerodynamic enhancement via material fitness and efficient structural shape optimisation. A heuristic approach is proposed in this work that combines both airfoil and wing-morphing derivations. Based on non-linear structural solutions, the flexible airfoils allow multiple shape changes through an array of cambers, so that prescribed flow improvements can be achieved. The heuristic argument is then extended towards global shape control of three-dimensional wings with the remit to enhance roll control. The design paradigm employs a hierarchical strategy interleaving model parametrisation with structural optimisation into the aerodynamic analysis; and, in conjunction with global approximation technique, roll augmentation is investigated whilst total drag is minimised.

Downloads

Download data is not yet available.

References

Alonso, J. J., LeGresley, P., van der Weide, E., Martins, J. R., & Reuther, J. J. (2004, August

–September 1). A framework for high-fidelity multi-disciplinary optimization. AIAA 2004-

Paper presented at the 10th AIAA/ISSMO Multidisciplany Analysis and Optimization

Conference, Albany, New York.

Amitay, M., Smith, D., Kibens, V., Parekh, D., & Glezer, A. (2001). Aerodynamic flow control

over an unconventional airfoil using synthetic jet actuators. AIAA Journal, 39, 361–370.

Barrett, R., & Vos, R. (2007). Post-buckled precompressed (PBP) subsonic micro flight control

actuators and surfaces. Proceedings of SPIE, Active and Passive Smart Structures and Integrated

Systems, 6525, 1–12. doi:10.1117/12.711561

Cai, J., & Liu, F. (2001, January 8–11). Static aero-elastic computation with a coupled CFD and

CSD method. AIAA 01-0717. Paper presented at the 39th AIAA Aerospace Sciences Meeting

and Exhibit, Reno, NV.Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting

algorithm for multi-objective optimization: NSGA-II. Lecture Notes in Computer Science,

, 848–849.

ESDU. (1997). VGK method for two-dimensional aerofoil sections. Version 2.0, 96028 B.

Fiacco, A. V., & McCormick, G. P. (1968). Nonlinear programming: Sequential unconstrained

minimization techniques. New York, NY: Wiley.

Gibson, L. J., & Ashby, M. F. (1977). Cellular solid structures and properties (2nd ed.).

Cambridge: Cambridge University Press.

Gilyard, G., Georgie, J., & Barnicki, J. S. (1999). Flight test of an adaptive configuration optimization

system for transport aircraft (Tech. Rep. NASA-TM-1999-206569). Edwards, CA:

Dryden Flight Research Centre.

Keane, A. J., & Nair, P. B. (2005). Computational approaches for aerospace design. Chicester:

Wiley.

Kikuta, M. T. (2003). Mechanical properties of candidate materials for morphing wings (Master’s

thesis). Blacksburg, VA.

Lachenal, X., Weaver, P., & Daynes, S. (2012). Multi-stable composite twisting structure for

morphing applications. Proceedings of the Royal Society A: Mathematical, Physical and

Engineering Sciences, 468, 1230–1251.

Li, D., Guo, S., & Xiang, J. (2012). Modelling and nonlinear aeroelastic analysis of a wing section

with morphing trailing edge. Journal of Aerospace Engineering, 227, 619–631.

doi:10.1177/0954410012438341

Love, M. H., Zink, P. S., Stroud, R. L., Bye, D. R., & Chase, C. (2004, April 19–22). Impact of

actuation concepts on morphing aircraft structures. 5th AIAA/ASME/ASCE/AHS/ASC Structures,

Structural Dynamics & Materials Conference, AIAA 2004-1724, Palm Springs, CA.

Lyn, G., & Mills, N. J. (2001). Design of foam crash mats for head impact protection. Sports

Engineering, 4, 153–163.

Maskew, B. (1987, September). Program VSAERO theory document. A computer program for

calculating nonlinear aerodynamic characteristics of arbitrary configurations (Contractor

Report 4023). NASA.

Mead, R. (1998). The design of experiments. Cambridge: Cambridge University Press.

Mills, N. J., & Gilchrist, A. (2000). Modelling the indentation of low density polymer foams.

Celullar Polymers, 19, 389–412.

Mills, N. J., & Lyn, G. (2001). Design of foam padding for rugby posts. Proceedings of TMS

Conference on Materials and Science in Sports (pp. 105–117). San Diego.

Ogden, R. W. (1972). Large deformation isotropic elasticity: On the correlation of theory and

experiment for compressible rubberlike solids. Proceedings of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 328, 567–583.

Ogden, R. W., Saccomandi, G., & Sgura, I. (2004). Fitting hyperelastic models to experimental

data. Computational Mechanics, 34, 484–502.

Piegl, L., & Tiller, W. (1997). The NURBS book (2nd ed.). New York: Springer Verlag.

Pinkerton, J. L., & Moses, R. W. (1997). A feasibility study to control airfoil shape using thunder

(Tech. Rep. NASA TM-4767). Hampton, VA: Langley Research Centre.

Rivlin, R. S. (1948). Large elastic deformations of isotropic materials. I. Fundamental concepts.

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering

Sciences, 240, 459–490.

Rodrigues, A. R. (2007, January 8–11). Morphing aircraft technology survey. 45th AIAA Aerospace

Sciences Meeting and Exhibit, AIAA 2007-1258, Reno, Nevada.

Roth, B. D., & Crossley, W. A. (2003, November 17–19). Application of optimization techniques

in the conceptual design of morphing aircraft. AIAA’s 3rd Annual Aviation Technology, Integration

and Operations (ATIO) Tech, AIAA 2003-6733, Denver, CO.

Saggere, L., & Kota, S. (1999). Static shape control of smart structures using compliant mechanisms.

AIAA Journal, 37, 572–578.

Scherer, L. B., Martin, C. A., Appa, K., Kudva, J. N., & West, M. N. (1997). Smart wing test

results. SPIE Proceedings, 3044, 1–11.

Schrodt, M., Benderoth, G., Kühhorn, A., & Silber, G. (2005). Hyperelastic description of

polymer soft foams at finite deformations. Technische Mechanik, 25, 162–173.

Seifert, A., Eliahu, S., Greenblatt, D., & Wygnanski, I. (1998). Use of piezoelectric actuators for

airfoil separation control. AIAA Journal, 36, 1535–1537.Smith, M. J., Hodges, D. H., & Cesnik, C. E. S. (1995, November). An evaluation of computational

algorithms to interface between CFD and CSD methodologies (Tech. Rep. WL-TR-96-

. USAF Wright Laboratories.

Thomson, R. D., Birkbeck, A. E., Tan, W. L., McCafferty, L. F., Grant, S., & Wilson, J. (1999).

The modelling and performance of training shoe cushioning systems. Sports Engineering, 2,

–120.

Thuwis, G. (2012, June). Stiffness and layout tailoring of a morphing high-lift system with aeroelastic

loads (Ph.D. thesis). Delft University.

Thuwis, G. A. A., Abdalla, M. M., & Gurdal, Z. (2010). Optimization of a variable-stiffness skin

for morphing high-lift devices. Smart Materials and Structures, 19, 1–10. doi:10.1088/0964-

/19/12/124010

Twizell, E. H., & Ogden, R. W. (1983). Non-linear optimization of the material constants in

Ogden’s stress-deformation function for incompressinle isotropic elastic materials. The Journal

of the Australian Mathematical Society. Series B. Applied Mathematics, 24, 424–434.

Ursache, N., Bressloff, N., & Keane, A. J. (2004, July). The design of post-buckled spinal structures

for airfoil shape control using optimization methods. 5th ASMO UK/ISSMO Conference

on Engineering Design Optimization, Stratford-upon-Avon: Leeds University Press.

Ursache, N., Bressloff, N., & Keane, A. J. (2011). Aircraft roll enhancement via multi-objective

optimization using surrogate modeling. AIAA Journal, 49, 1525–1541. doi:10.2514/

J050812.

Ursache, N., Keane, A. J., & Bressloff, N. W. (2006). Design of postbuckled spinal structures for

airfoil camber and shape control. AIAA Journal, 44, 3115–3124. doi:10.2514/1.22636.

Ursache, N., & Mares, C. (2012, April 23–26). Optimisation of a corrugated skin for a morphable

winglet. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials

Conference. Honolulu, HI: AIAA.

Ursache, N., Melin, T., Isikveren, A. T., & Friswell, M. (2007, September 18–20). Morphing

winglets for aircraft multi-phase improvement. 7th AIAA Aviation Technology, Integration

and Operations Conference (ATIO). Belfast, Northern Ireland: AIAA.

Voracek, D., Pendleton, E., Reichenbach, E., Griffin, K., & Welch, L. (2003). The active aeroelastic

wing phase I flight research through January 2003 (Tech. Rep. NASA-TM-2003-

. Dryden Flight Research Centre.

Weisshaar, T. (2006). Morphing aircraft technology – New shapes for aircraft design.

Multifunctional Structures / Integration of Sensors and Antennas. RTO-MP-AVT-141,

Neuilly-sur-Seine. France: RTO.

Downloads

Published

2014-07-01

How to Cite

Narcis M. Ursache, Neil W. Bressloff, & Andy J. Keane. (2014). On morphing wing for roll augmentation via material fitness using surrogate modelling. European Journal of Computational Mechanics, 23(3-4), 138–160. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/1331

Issue

Section

Original Article