On morphing wing for roll augmentation via material fitness using surrogate modelling
Keywords:
multi-disciplinary optimisation, material modelling, surrogate modellingAbstract
This research is concerned with the design and analysis of a multi-camber morphing wing that meets prescribed aerodynamic configurations according to the design intent. A global optimisation paradigm is used towards morphing wing that interlinks aerodynamic enhancement via material fitness and efficient structural shape optimisation. A heuristic approach is proposed in this work that combines both airfoil and wing-morphing derivations. Based on non-linear structural solutions, the flexible airfoils allow multiple shape changes through an array of cambers, so that prescribed flow improvements can be achieved. The heuristic argument is then extended towards global shape control of three-dimensional wings with the remit to enhance roll control. The design paradigm employs a hierarchical strategy interleaving model parametrisation with structural optimisation into the aerodynamic analysis; and, in conjunction with global approximation technique, roll augmentation is investigated whilst total drag is minimised.
Downloads
References
Alonso, J. J., LeGresley, P., van der Weide, E., Martins, J. R., & Reuther, J. J. (2004, August
–September 1). A framework for high-fidelity multi-disciplinary optimization. AIAA 2004-
Paper presented at the 10th AIAA/ISSMO Multidisciplany Analysis and Optimization
Conference, Albany, New York.
Amitay, M., Smith, D., Kibens, V., Parekh, D., & Glezer, A. (2001). Aerodynamic flow control
over an unconventional airfoil using synthetic jet actuators. AIAA Journal, 39, 361–370.
Barrett, R., & Vos, R. (2007). Post-buckled precompressed (PBP) subsonic micro flight control
actuators and surfaces. Proceedings of SPIE, Active and Passive Smart Structures and Integrated
Systems, 6525, 1–12. doi:10.1117/12.711561
Cai, J., & Liu, F. (2001, January 8–11). Static aero-elastic computation with a coupled CFD and
CSD method. AIAA 01-0717. Paper presented at the 39th AIAA Aerospace Sciences Meeting
and Exhibit, Reno, NV.Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting
algorithm for multi-objective optimization: NSGA-II. Lecture Notes in Computer Science,
, 848–849.
ESDU. (1997). VGK method for two-dimensional aerofoil sections. Version 2.0, 96028 B.
Fiacco, A. V., & McCormick, G. P. (1968). Nonlinear programming: Sequential unconstrained
minimization techniques. New York, NY: Wiley.
Gibson, L. J., & Ashby, M. F. (1977). Cellular solid structures and properties (2nd ed.).
Cambridge: Cambridge University Press.
Gilyard, G., Georgie, J., & Barnicki, J. S. (1999). Flight test of an adaptive configuration optimization
system for transport aircraft (Tech. Rep. NASA-TM-1999-206569). Edwards, CA:
Dryden Flight Research Centre.
Keane, A. J., & Nair, P. B. (2005). Computational approaches for aerospace design. Chicester:
Wiley.
Kikuta, M. T. (2003). Mechanical properties of candidate materials for morphing wings (Master’s
thesis). Blacksburg, VA.
Lachenal, X., Weaver, P., & Daynes, S. (2012). Multi-stable composite twisting structure for
morphing applications. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 468, 1230–1251.
Li, D., Guo, S., & Xiang, J. (2012). Modelling and nonlinear aeroelastic analysis of a wing section
with morphing trailing edge. Journal of Aerospace Engineering, 227, 619–631.
doi:10.1177/0954410012438341
Love, M. H., Zink, P. S., Stroud, R. L., Bye, D. R., & Chase, C. (2004, April 19–22). Impact of
actuation concepts on morphing aircraft structures. 5th AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics & Materials Conference, AIAA 2004-1724, Palm Springs, CA.
Lyn, G., & Mills, N. J. (2001). Design of foam crash mats for head impact protection. Sports
Engineering, 4, 153–163.
Maskew, B. (1987, September). Program VSAERO theory document. A computer program for
calculating nonlinear aerodynamic characteristics of arbitrary configurations (Contractor
Report 4023). NASA.
Mead, R. (1998). The design of experiments. Cambridge: Cambridge University Press.
Mills, N. J., & Gilchrist, A. (2000). Modelling the indentation of low density polymer foams.
Celullar Polymers, 19, 389–412.
Mills, N. J., & Lyn, G. (2001). Design of foam padding for rugby posts. Proceedings of TMS
Conference on Materials and Science in Sports (pp. 105–117). San Diego.
Ogden, R. W. (1972). Large deformation isotropic elasticity: On the correlation of theory and
experiment for compressible rubberlike solids. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 328, 567–583.
Ogden, R. W., Saccomandi, G., & Sgura, I. (2004). Fitting hyperelastic models to experimental
data. Computational Mechanics, 34, 484–502.
Piegl, L., & Tiller, W. (1997). The NURBS book (2nd ed.). New York: Springer Verlag.
Pinkerton, J. L., & Moses, R. W. (1997). A feasibility study to control airfoil shape using thunder
(Tech. Rep. NASA TM-4767). Hampton, VA: Langley Research Centre.
Rivlin, R. S. (1948). Large elastic deformations of isotropic materials. I. Fundamental concepts.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 240, 459–490.
Rodrigues, A. R. (2007, January 8–11). Morphing aircraft technology survey. 45th AIAA Aerospace
Sciences Meeting and Exhibit, AIAA 2007-1258, Reno, Nevada.
Roth, B. D., & Crossley, W. A. (2003, November 17–19). Application of optimization techniques
in the conceptual design of morphing aircraft. AIAA’s 3rd Annual Aviation Technology, Integration
and Operations (ATIO) Tech, AIAA 2003-6733, Denver, CO.
Saggere, L., & Kota, S. (1999). Static shape control of smart structures using compliant mechanisms.
AIAA Journal, 37, 572–578.
Scherer, L. B., Martin, C. A., Appa, K., Kudva, J. N., & West, M. N. (1997). Smart wing test
results. SPIE Proceedings, 3044, 1–11.
Schrodt, M., Benderoth, G., Kühhorn, A., & Silber, G. (2005). Hyperelastic description of
polymer soft foams at finite deformations. Technische Mechanik, 25, 162–173.
Seifert, A., Eliahu, S., Greenblatt, D., & Wygnanski, I. (1998). Use of piezoelectric actuators for
airfoil separation control. AIAA Journal, 36, 1535–1537.Smith, M. J., Hodges, D. H., & Cesnik, C. E. S. (1995, November). An evaluation of computational
algorithms to interface between CFD and CSD methodologies (Tech. Rep. WL-TR-96-
. USAF Wright Laboratories.
Thomson, R. D., Birkbeck, A. E., Tan, W. L., McCafferty, L. F., Grant, S., & Wilson, J. (1999).
The modelling and performance of training shoe cushioning systems. Sports Engineering, 2,
–120.
Thuwis, G. (2012, June). Stiffness and layout tailoring of a morphing high-lift system with aeroelastic
loads (Ph.D. thesis). Delft University.
Thuwis, G. A. A., Abdalla, M. M., & Gurdal, Z. (2010). Optimization of a variable-stiffness skin
for morphing high-lift devices. Smart Materials and Structures, 19, 1–10. doi:10.1088/0964-
/19/12/124010
Twizell, E. H., & Ogden, R. W. (1983). Non-linear optimization of the material constants in
Ogden’s stress-deformation function for incompressinle isotropic elastic materials. The Journal
of the Australian Mathematical Society. Series B. Applied Mathematics, 24, 424–434.
Ursache, N., Bressloff, N., & Keane, A. J. (2004, July). The design of post-buckled spinal structures
for airfoil shape control using optimization methods. 5th ASMO UK/ISSMO Conference
on Engineering Design Optimization, Stratford-upon-Avon: Leeds University Press.
Ursache, N., Bressloff, N., & Keane, A. J. (2011). Aircraft roll enhancement via multi-objective
optimization using surrogate modeling. AIAA Journal, 49, 1525–1541. doi:10.2514/
J050812.
Ursache, N., Keane, A. J., & Bressloff, N. W. (2006). Design of postbuckled spinal structures for
airfoil camber and shape control. AIAA Journal, 44, 3115–3124. doi:10.2514/1.22636.
Ursache, N., & Mares, C. (2012, April 23–26). Optimisation of a corrugated skin for a morphable
winglet. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference. Honolulu, HI: AIAA.
Ursache, N., Melin, T., Isikveren, A. T., & Friswell, M. (2007, September 18–20). Morphing
winglets for aircraft multi-phase improvement. 7th AIAA Aviation Technology, Integration
and Operations Conference (ATIO). Belfast, Northern Ireland: AIAA.
Voracek, D., Pendleton, E., Reichenbach, E., Griffin, K., & Welch, L. (2003). The active aeroelastic
wing phase I flight research through January 2003 (Tech. Rep. NASA-TM-2003-
. Dryden Flight Research Centre.
Weisshaar, T. (2006). Morphing aircraft technology – New shapes for aircraft design.
Multifunctional Structures / Integration of Sensors and Antennas. RTO-MP-AVT-141,
Neuilly-sur-Seine. France: RTO.