New topological approach for the modelling of mecatronic systems: application for piezoelectric structures

Authors

  • M. Miladi Chaabane Mechanical, Modeling and Manufacturing Unit, National Engineering School of Sfax (ENIS), BP 1173 – 3038, Sfax, Tunisia; Laboratory of Engineering of the Mechanical Structures and Materials, High Institute of Mechanic of Paris (SUPMECA), 3, rue Fernand Hainaut, 93407, Saint-Ouen, Cedex, France
  • R. Plateaux Laboratory of Engineering of the Mechanical Structures and Materials, High Institute of Mechanic of Paris (SUPMECA), 3, rue Fernand Hainaut, 93407, Saint-Ouen, Cedex, France
  • J.-Y. Choley Laboratory of Engineering of the Mechanical Structures and Materials, High Institute of Mechanic of Paris (SUPMECA), 3, rue Fernand Hainaut, 93407, Saint-Ouen, Cedex, France
  • C. Karra Mechanical, Modeling and Manufacturing Unit, National Engineering School of Sfax (ENIS), BP 1173 – 3038, Sfax, Tunisia
  • A. Riviere Laboratory of Engineering of the Mechanical Structures and Materials, High Institute of Mechanic of Paris (SUPMECA), 3, rue Fernand Hainaut, 93407, Saint-Ouen, Cedex, France
  • M. Haddar Mechanical, Modeling and Manufacturing Unit, National Engineering School of Sfax (ENIS), BP 1173 – 3038, Sfax, Tunisia;

Keywords:

transformations, topological collections, KBR topological graph, MGS language, piezoelectric structure

Abstract

In this study, a new topological approach for the modelling of mecatronic systems is presented. This approach offers the opportunity to separate the behaviour laws (physics) and the interconnection laws (topology) at local level. Then, it can be used as a unification basis for the modelling of the different fields of Mecatronics. This approach is based on the notion of topological collections and transformations and applied using the MGS language (Modelling of General Systems). The emphasis is placed on the application of this approach to the piezoelectric structures (Multi layer piezoelectric stack and piezoelectric truss structure). To validate this approach, simulation results are presented and compared with those obtained by the finite element analysis ANSYS software.

Downloads

Download data is not yet available.

References

Björke, Ø. (1995). Manufacturing systems theory – A geometric approach to connection.

Trondheim- Norway: Tapir.

Boucher, D., Lagier, M., & Maerfeld, C. (1981). Computation of the vibration modes for

piezoelectric array transducers using a mixed finite element perturbation method. IEEE

Transactions Sonics and Ultrasonics, 28, 318–330.

Branin, F. H. Jr. (1966). The algebraic topological basis for network analogies and the vector

calculus. In Proceedings of the Symposium on Generalized Networks, 16, 453–491.

Cohen, J. (2004). Intégration des collections topologiques et des transformations dans un langage

fonctionnel. PhD thesis, University of Evry Val d’Essonne.

Egli, R. (2000). Cadre de travail pour la spécification de systèmes avec des chaînes sur un

complexe cellulaire. PhD thesis, University of Montreal.

Firestone, F. (1933). A new analogy between mechanical and electrical systems. Journal of the

Acoustical Society of America, 4, 249–267.

Giavitto, J.-L., Godin, C., Michel, O., Prusinkiewicz, P. (2002). Modelling and Simulation of

biological process in the context of genomics, chapter Computational Models for Integrative

and Developmental Biology. Hermes.

IEEE. (1988). IEEE standard on piezoelectricity. New York, NY: Institute of Electrical and Electronics

Engineers.

Kron, G. (1942). A short course in tensor analysis for electrical engineers. Wiley New York

London: Chapman & Hall.

Kron, G. (1963). Diakoptics; The Piecewise Solution for Large-Scale System. London:

Macdonald.

Miladi Chaabane, M., Plateaux, R., Choley, J.-Y., Karra, C., Riviere, A., & Haddar, M. (2012).

Topological approach to solve 2D truss structure using MGS language. IEEE MECATRONIC

REM, 437–444. doi:10.1109/MECATRONICS.2012.6451045MODELICA. Modeling of Complex Physical Systems. Retrieved February 2013, from http://www.

modelica.org

Plateaux, R. (2011). Continuité et cohérence d'une modélisation des systèmes mécatroniques

basée(s) sur une structure topologique. PhD thesis, Superior Engineering Institute of Paris

SUPMECA.

Plateaux, R., Penas, O., Rivière, A., Choley, J-Y. (2007). Need for the definition of a topological

structure for the complex systems modeling. CPI 2007.

Roth, J.-P. (1955). An application of algebraic topology to numerical analysis: On the existence

of a solution to the network problem. Proceedings of the National Academy of Sciences, 41,

–521.

Shai, O. (2001a). Combinatorial representations in structural analysis. Computing in Civil

Engineering, 15, 193–207.

Shai, O. (2001b). Deriving structural theorems and methods using tellegen’s theorem and

combinatorial. International Journal of Solids and Structures, 38, 8037–8052.

Shai, O. (2001c). The multidisciplinary combinatorial approach and its applications in engineering.

AIEDAM - AI for Engineering Design, Analysis and Manufacturing, 15, 109–144.

Spicher, A. (2006). Transformation de collections topologiques de dimension arbitraire.

Application à la modélisation de systèmes dynamiques, PhD thesis, University of Evry.

Spicher, A., & Michel, O. (2007). Declarative modeling of a neurulation-like process. BioSystems,

, 281–288.

The MGS home page. Retrieved February 2013, from http://www.ibisc.univ-evry.fr/~mgs/

Tonti, E. (2003). A Classification Diagram for Physical Variables (draft). Retrieved February

, from http://www.dic.units.it/perspage/discretephysics/papers/diagrammi.pdf

Downloads

Published

2013-07-01

How to Cite

M. Miladi Chaabane, R. Plateaux, J.-Y. Choley, C. Karra, A. Riviere, & M. Haddar. (2013). New topological approach for the modelling of mecatronic systems: application for piezoelectric structures. European Journal of Computational Mechanics, 22(2-4), 209–227. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/1395

Issue

Section

Original Article