Advanced finite element modelling for the prediction of 3D breast deformation

Authors

  • Guillaume Dufaye IFTH Troyes 270 Faubourg Croncels, Troyes 10000, France; Gamma3-INRIA Team, Charles Delaunay Institute, University of Technology of Troyes, 12 rue Marie Curie – BP2060 Troyes 10010, France
  • Abel Cherouat Gamma3-INRIA Team, Charles Delaunay Institute, University of Technology of Troyes, 12 rue Marie Curie – BP2060 Troyes 10010, France
  • Jean-Marie Bachmann IFTH Troyes 270 Faubourg Croncels, Troyes 10000, France
  • Houman Borouchaki Gamma3-INRIA Team, Charles Delaunay Institute, University of Technology of Troyes, 12 rue Marie Curie – BP2060 Troyes 10010, France

Keywords:

breast, reconstitution, modelling, simulation, comsol-multiphysic

Abstract

The paper aims to study the behaviour of female busts when static or dynamic and must take into account the different biological components of the breast. The numerical simulation of the breast deformability enables the development of new techniques for corsetry or new medical equipment, especially for the detection of breast cancer. In this study, a hyperelastic model of the static behaviour of the bust based on an experimentally-finite element simulation that takes into account the components (skin, fat, glands or fibres and suspensory ligaments of Cooper) responsible for the actual breast deformability under the influence severity is given.

Downloads

Download data is not yet available.

References

Azar, F. S., Metaxas, D. N., & Schnall, M. D. (2002). Methods for modelling and predicting

mechanical deformations of the breast under external perturbations. Medical Image Analysis,

, 1–27.

Catanuto, G., Spano, A., Pennati, A., Riggio, E., Farinella, G. M., Impoco, G., … Nava, M. B.

(2008). Experimental methodology for digital breast shape analysis and objective surgical

outcome evaluation. Journal of Plastic Reconstructive and Aesthetic Surgery, 61, 314–318.

Del Palomar, A. P., Calvo, B., Herrero, J., Lopez, J., & Doblaré, M. (2008). A finite element

model to accurately predict real deformations of the breast. Medical Engineering & Physics,

, 1089–1097.

Edsander-Nord, A., Wickman, M., & Jurell, G. (1996). Measurement of breast volume with

thermoplastic casts. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand

Surgery, 30, 129–132.

Table 6. Predicted modulus of breast tissue compared with literature values.

Elastic modulus

(kPa)

Roose et al.

(2005)

Tanner et al.

(2006)

Gefen and Dilmoney

(2007)

Our results

Gland tissue 1.7–500 1–20 7.5–66 0.5–10

Fat tissue 1.7–500 1 0.5–25 0.1–2

Skin 200–3000 10–300

European Journal of Computational Mechanics 181

Garson, S., Delay, E., Sinna, R., Delaporte, T., Robbe, M., & Carton, S. (2005). 3D evaluation

and mammary augmentation surgery. Annales de chirurgie plastique esthétique, 50, 643–651.

Gefen, A., & Dilmoney, B. (2007). Mechanics of the normal female breast. Technology and

Health Care, 15, 259–271. IOS Press.

Kovacs, L., Eder, M., Hollweck, R., Zimmermann, A., Settles, M., Schneider, A., … Biemer, E.

(2007). Comparison between breast volume measurement using 3D surface imaging and

classical techniques. The Breast, 16, 137–145.

Lee, H. Y., Hong, K., & Kim, E. A. (2004). Measurement protocol of women’s nude breasts

using a 3D scanning technique. Applied Ergonomics, 35, 353–359.

Lorentzen, D., & Lawson, L. (1987). Selected sports bras: A biomechanical analysis of breast

motion while jogging. The Physician and Sports Medicine, 15, 128–139.

Nelder, J., & Mead, R. (1965). A simplex method for function minimization. Computer Journal,

, 308–313.

Page, K. A., & Steele, J. R. (1999). Breast motion and sports brassiere design: Implications for

future research. Sports Medicine, 27, 205–211.

Pathmanathan, P., Gavaghan, D. J., Whiteley, J. P., Chapman, S. J., & Brady, J. M. (2008).

Predicting tumor location by modeling the deformation of the breast. IEEE Transactions on

Biomedical Engineering, 55, 2471–2479.

Wellman, P. S. (1999). Tactile imaging. (PhD thesis). University of Harvard Press, Harvard, IL,

USA.

Roose, L., De Maerteleire, W., Mollemans, W., & Suetens, P. (2005). Validation of different

soft tissue simulation methods for breast augmentation. International Congress Series, 1281,

–490.

Seo, H., Cordier, F., & Hong, K. (2007). A breast modeler based on analysis of breast scans.

Computer Animation and Virtual Worlds, 18, 141–151.

Simonetti, F., Huang, L., Duric, N., & Littrup, P. (2009). Diffraction and coherence in breast

ultrasound tomography: a study with a toroidal array. Medical Physics, 36, 2955–2965.

Sinna, R., Garson, S., Taha, F., Benhaim, T., Carton, C., Delay, E., & Robbe, M. (2009).

Evaluation of 3D numerisation with structured light projection in breast surgery. Annales de

chirurgie plastique esthétique, 54, 317–330.

Tanner, C., Schanabel, J. A., Hill, D. L. G., & Hawkes, D. J. (2006). Factors influencing the

accuracy of biomechanical breast models. Medical Physics, 33, 1758–1769.

Vandeweyer, E., & Hertens, D. (2002). Quantification of glands and fat in breast tissue: An

expérimental determination. Annals of Anatomy, 184, 181–184.

Downloads

How to Cite

Guillaume Dufaye, Abel Cherouat, Jean-Marie Bachmann, & Houman Borouchaki. (2013). Advanced finite element modelling for the prediction of 3D breast deformation. European Journal of Computational Mechanics, 22(2-4), 170–182. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/1403

Issue

Section

Original Article