Elastic foam compression in a finite element (FE) context

Authors

  • K. Hitti MINES ParisTech, CEMEF – Centre de Mise en Forme des Matériaux, CNRS UMR 7635, BP 2071 rue Claude Daunesse 06904, Sophia Antipolis Cedex, France
  • T. Coupez MINES ParisTech, CEMEF – Centre de Mise en Forme des Matériaux, CNRS UMR 7635, BP 2071 rue Claude Daunesse 06904, Sophia Antipolis Cedex, France
  • M. Bernacki MINES ParisTech, CEMEF – Centre de Mise en Forme des Matériaux, CNRS UMR 7635, BP 2071 rue Claude Daunesse 06904, Sophia Antipolis Cedex, France
  • L. Silva MINES ParisTech, CEMEF – Centre de Mise en Forme des Matériaux, CNRS UMR 7635, BP 2071 rue Claude Daunesse 06904, Sophia Antipolis Cedex, France

Keywords:

elastic foam, compression, level-set, anisotropic mesh adaptation, finite element method

Abstract

A procedure to generate statistical virtual representative volume elements of foam in a finite element context is described. This technique, based on Laguerre tessellations and advancing front method, level-set description of interfaces and anisotropic meshing adaptation, is detailed. The capability of the procedure to respect statistical data could be insured by the advancing front method. To simulate biaxial foam compression, a uniform velocity is imposed on the domain’s upper and lower boundaries. By considering the presence of air inside the foam’s cells which are bounded by the elastic solid skeleton, a fluid–structure interaction problem occurs between a compressible elastic solid and a compressible fluid. A monolithic formulation is used for solving this problem. Such strategy gives rise to an extra stress tensor in the Navier–Stokes equations coming from the presence of the structure in the fluid.

Downloads

Download data is not yet available.

References

Almeida, R., Feijoo, R., Galeao, A., Padra, C., & Silva, R. (2000). Adaptive finite element

computational fluid dynamics using an anisotropic error estimator. Computer Methods in Applied

Mechanics and Engineering, 182, 379–400.

Appel, K., & Haken, W. (1976). Every planar map is four colorable. Bulletin of the American

Mathematical Society, 82, 711–712.

Arnold, D., Brezzi, F., & Fortin, M. (1984). A stable finite element for the stokes equations. Calcolo,

, 337–344.

Benabbou, A., Borouchaki, H., Laug, P., & Jian, L. (2009). Geometrical modeling of granular structures

in two and three dimensions. Application to nanostructures. International Journal for Numerical

Methods in Engineering, 80, 425–454.

Benabbou, A., Borouchaki, H., Laug, P., & Jian, L. (2010). Numerical modeling of nanostructured

materials. Finite Elements in Analysis and Design, 46(1–2), 165–180.

Bernacki, M., Chastel, Y., Coupez, T., & Logé, R.E. (2008). Level set framework for the numerical

modelling of primary recrystallization in polycrystalline materials. Scripta Materialia, 58, 1129–

Bernacki, M., Resk, H., Coupez, T., & Logé, R.E. (2009). Finite element model of primary recrystallization

in polycrystalline aggregates using a level set framework. Modelling and Simulation in Materials

Science and Engineering, 17, 064006.

K. Hitti et al.

Bernacki, M., Logé, R.E., & Coupez, T. (2011). Level set framework for the finite-element modelling of

recrystallization and grain growth in polycrystalline materials. Scripta Materialia, 64, 525–528.

Brélaz, D. (1979). New methods to color the vertices of a graph. Communications of the ACM, 22,

–256.

Coupez, T. (1996). Stable-stabilized finite element for 3D forming calculation. Internal report, Mines

ParisTech.

Coupez, T., Digonnet, H., & Ducloux, R. (2000). Parallel meshing and remeshing: Dynamic load

balancing of mesh-based applications on parallel. Applied Mathematical Modelling, 25, 153–175.

Digonnet, H., Silva, L., & Coupez, T. (2007). Cimlib: A fully parallel application for numerical simulations

based on components assembly. Materials Processing and Design; Modeling, Simulation and

Applications; NUMIFORM ‘07; Proceedings of the 9th International Conference on Numerical

Methods in Industrial.

Franca, L., Nesliturk, A., & Stynes, M. (1998). On the stability of residual-free bubbles for convection

diffusion problems and their approximation by a two-level finite element method. Computer

Methods in Applied Mechanics and Engineering, 166, 35–49.

Gibson, L.J. & Ashby, M.F. (1997). Cellular solids: Structure and properties (2nd ed.). Cambridge:

Cambridge University Press.

Glickenstein, D. (2007). A monotonicity property for weighted delaunay triangulations. Discrete and

Computational Geometry, 38, 651–664.

Gruau, C. (2004). Metric generation for anisotropic mesh adaptation, with numerical applications to

material forming simulation. PhD Thesis, Mines ParisTech, Sophia Antipolis.

Hachem, E. (2009). Stabilized finite element method for heat transfer and turbulent flows inside

industrial furnaces. PhD Thesis, Mines ParisTech, Sophia Antipolis.

Hachem, E., Kloczko, T., Digonnet, H., & Coupez, T. (2012). Stabilized finite element solution to

handle complex heat and fluid flows in industrial furnaces using the immersed volume method.

International Journal for Numerical Methods in Fluids, 68(1), 99–121.

Hitti, K. (2011). Direct numerical simulation of complex Representative Volume Elements (RVEs): Generation,

Resolution and Homogenization. PhD Thesis, Mines Paristech, Sophia Antipolis.

Hitti, K., Laure, P., Coupez, T., Silva, L., & Bernacki, M. (2012). Precise generation of complex statistical

Representative Volume Elements (RVEs) in a finite element context. Computational Materials

Science, 61, 224–238.

Imai, H., Iri, M., & Murota, K. (1985). Voronoi diagram in the Laguerre geometry and its applications.

SIAM Journal on Computing, 14(1), 93–105.

Jang, W.-Y., Kraynik, A.M., & Kyriakides, S. (2008). On the microstructure of open-cell foams and its

effect on elastic properties. International Journal of Solids and Structures, 45, 1845–1875.

Kubale, M. (2004). Graph colorings. Rhode Island: American Mathematical Society Providence.

Li, K., Gao, X.L., & Subhash, G. (2005). Effects of cell shape and cell wall thickness variations on the

elastic properties of two-dimensional cellular solids. International Journal of Solids and Structures,

, 1777–1795.

Li, K., Gao, X.-L., & Subhash, G. (2006). Effects of cell shape and strut cross-sectional area variations

on the elastic properties of three-dimensional open-cell foams. Journal of the Mechanics and Physics

of Solids, 54, 783–806.

Marchi, C.S., & Mortensen, A. (2001). Deformation of open-cell aluminum foam. Acta Materialia, 49,

–3969.

Mesri, Y., Zerguine, W., Digonnet, H., Silva, L., & Coupez, T. (2008). Dynamic parallel adaption for

three dimensional unstructured meshes: Application to interface tracking. Proceedings of the 17th

International Meshing Roundtable, 195–212.

Mills, N.J. (2007). The high strain mechanical response of the wet Kelvin model for open-cell foams.

International Journal of Solids and Structures, 44(1), 51–65.

Mills, N.J., & Zhu, H.X. (1999). The high strain compression of closed-cell polymer foams. Journal of

the Mechanics and Physics of Solids, 47, 669–695.

Resk, H., Delannay L., Bernacki, M., Coupez, T., & Logé, R.E. (2009). Adaptive mesh refinement and

automatic remeshing in crystal plasticity finite element simulations. Modelling and Simulation in

Materials Science and Engineering, 17, 075012.

Simone, A.E., & Gibson, L.J. (1998). Effects of solid distribution on the stiffness and strength of

metallic foams. Acta Materialia, 46, 2139–2150.

Sun, Z., Logé, R.E., & Bernacki, M. (2010). 3D finite element model of semi-solid permeability in an

equiaxed granular structure. Computational Materials Science, 49(1), 158–170.

European Journal of Computational Mechanics 57

Warren, W.E., & Kraynik, A.M. (1988). The linear elastic properties of open-cell foams. Journal of

Applied Mechanics, 55, 341–346.

Warren, W.E., & Kraynik, A.M. (1997). Linear elastic behavior of a low-density Kelvin foam with open

cells. Journal of Applied Mechanics, 64, 787–794.

Wismans, J.G.F., Govaert, L.E., & van Dommelen, J.A.W. (2010). X-ray computed tomography-based

modeling of polymeric foams: The effect of finite element model size on the large strain response.

Journal of Polymer Science Part B: Polymer Physics, 48, 1526–1534.

Wismans, J.G.F., van Dommelen, J.A.W., Govaert, L.E., & Meijer, H.E.H. (2010). X-ray computed

tomography based modelling of polymer foams. Materials Science Forum, 638–642, 2761–2765.

Xu, T., & Li, M. (2009). Topological and statistical properties of a constrained Voronoi tessellation.

Philosophical Magazine, 89, 349–374.

Zhang, J.L., & Lu, Z.X. (2007). Numerical modeling of the compression process of elastic open-cell

foams. Chinese Journal of Aeronautics, 20, 215–222.

Zhu, H.X., Hobdell, J.R., & Windle, A.H. (2000). Effects of cell irregularity on the elastic properties of

open-cell foams. Acta Materialia, 48, 4893–4900.

Zhu, H.X., Hobdell, J.R., & Windle, A.H. (2001). Effects of cell irregularity on the elastic properties of

D Voronoi honeycombs. Journal of the Mechanics and Physics of Solids, 49, 857–870.

Zhu, H.X., Mills, N.J., & Knott, J.F. (1997). Analysis of the high strain compression of open-cell foams.

Journal of the Mechanics and Physics of Solids, 45, 1875–1899.

Zhu, H.X., Thorpe, S.M., & Windle, A.H. (2006). The effect of cell irregularity on the high strain

compression of 2D Voronoi honeycombs. International Journal of Solids and Structures, 43, 1061–

Zhu, H.X., & Windle, A.H. (2002). Effects of cell irregularity on the high strain compression of

open-cell foams. Acta Materialia, 50, 1041–1052.

Downloads

Published

2013-02-01

How to Cite

K. Hitti, T. Coupez, M. Bernacki, & L. Silva. (2013). Elastic foam compression in a finite element (FE) context. European Journal of Computational Mechanics, 22(1), 30–58. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/1413

Issue

Section

Original Article