Molecular mechanics simulations of graphene using finite elements

Authors

  • T.C. Theodosiou Department of Mechanical & Aeronautics Engineering, University of Patras, Rion-Patras, Greece
  • D.A. Saravanos Department of Mechanical & Aeronautics Engineering, University of Patras, Rion-Patras, Greece

Keywords:

graphene, molecular mechanics, specialty finite elements

Abstract

This paper demonstrates a modelling approach for graphene and related nanostructures by embedding molecular mechanics equations into finite element codes. Atomistic interactions are modelled using specialty finite elements, based on analytical expressions of molecular mechanics equations. The major advantages of the proposed approach can be summarised as: (i) direct integration into well-established software; (ii) more realistic representation than other similar approaches; and (iii) user-friendly way to create an atomistic structure. Examples of incorporating the developed finite elements into Abaqus are also demonstrated. The introduced approach does not claim to replace other well-established molecular mechanics/ dynamics software, but to provide a more intuitive structural modelling approach for graphene.

Downloads

Download data is not yet available.

References

Avila, A. F., Eduardo, A. C., & Neto, A. S. (2011). Vibrational analysis of graphene based

nanostructures. Computers & Structures, 89, 878–892.

Brenner, D. W. (1990). Empirical potential for hydrocarbons for use in simulating the chemical vapor

decomposition of diamond films. Phys. Rev. B, 42, 9458–9471.

Brownson, D. A. C., Kampouris, D. K., & Banks, C. E. (2011). An overview of graphene in energy

production and storage applications. Journal of Power Sources, 196, 48733–44885.

Caillerie, D., Mourad, A., & Raoult, A. (2006). Discrete homogenization in graphene sheet modeling.

Journal of Elasticity, 84, 33–68.

Dassault Systemes. Abaqus Unified FEA. Retrieved from http://www.3ds.com/products/simulia/portfolio/

abaqus/overview/

Gaim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6, 183–191.

Geim, A. K. (2009). Graphene: Status and prospects. Science, 324, 1530–1534.

Jones, J. E. (1924). On the determination of molecular fields-II: From the equations of state of

gas. Proceedings of the Royal Society of London, 106, 463–477.

Le Dret, H., & Raoult, A. (2011). Homogenization of hexagonal lattices. Comptees Rendus

Mathematique, 349, 111–114.

Natsuki, T., & Endo, M. (2004). Stress simulation of carbon nanotubes in tension and compression. Carbon,

(11), 2147–2151.

Parvaneh, V., Shariati, M., Torabi, H., & Sabeti, A. M. M. (2012). Torsional buckling behaviour of

SWCNTs using a molecular structural mechanics approach considering vacancy defects. Fullerenes,

Nanotubes and Carbon Nanostructures, 20, 709–720.

Poetscke, M., Rocha, C. G., Foa Torres, L. E. F., Roche, S., & Cuniberti, G. (2010). Modeling

graphene-based nanoelectromechanical devices. Physical Review B, 81, 193404.1–193404.4.

Sakhaee-Pour, A., Ahmadian, M. T., & Naghdabadi, R. (2008). Vibrational analysis of single-layered

graphene sheets. Nanotechnology, 19(085702), 1–7.

Shi, Z., Lu, H., Zhang, L., Yang, R., Wang, Y., Liu, D., … Zhang, G. (2012). Studies of graphene-based

nanoelectromechanical switches. Nano Research, 5, 82–87.

Suli, E., & Mayers, D. F. (2003). An introduction to numerical analysis. New York, NY: Cambridge

University Press.

Sun, Y., Wu, Q., & Shi, G. (2011). Graphene based new energy materials. Energy & Environmental

Science, 4, 1113–1132.

Theodosiou, T. C., & Saravanos, D. A. (2007). Molecular mechanics based finite element for carbon

nanotube modeling. Computer Modeling in Engineering & Science, 19, 121–134.

Tserpes, K. I. (2012). Strength of graphenes containing randomly dispersed vacancies. Acta Mechanica,

, 669–678.

Ypma, T. J. (1995). Historical development of the Newton–Raphson method. SIAM Review, 37,

–535.

Downloads

Published

2013-03-01

How to Cite

T.C. Theodosiou, & D.A. Saravanos. (2013). Molecular mechanics simulations of graphene using finite elements. European Journal of Computational Mechanics, 22(1), 59–78. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/1415

Issue

Section

Original Article