Molecular mechanics simulations of graphene using finite elements
Keywords:
graphene, molecular mechanics, specialty finite elementsAbstract
This paper demonstrates a modelling approach for graphene and related nanostructures by embedding molecular mechanics equations into finite element codes. Atomistic interactions are modelled using specialty finite elements, based on analytical expressions of molecular mechanics equations. The major advantages of the proposed approach can be summarised as: (i) direct integration into well-established software; (ii) more realistic representation than other similar approaches; and (iii) user-friendly way to create an atomistic structure. Examples of incorporating the developed finite elements into Abaqus are also demonstrated. The introduced approach does not claim to replace other well-established molecular mechanics/ dynamics software, but to provide a more intuitive structural modelling approach for graphene.
Downloads
References
Avila, A. F., Eduardo, A. C., & Neto, A. S. (2011). Vibrational analysis of graphene based
nanostructures. Computers & Structures, 89, 878–892.
Brenner, D. W. (1990). Empirical potential for hydrocarbons for use in simulating the chemical vapor
decomposition of diamond films. Phys. Rev. B, 42, 9458–9471.
Brownson, D. A. C., Kampouris, D. K., & Banks, C. E. (2011). An overview of graphene in energy
production and storage applications. Journal of Power Sources, 196, 48733–44885.
Caillerie, D., Mourad, A., & Raoult, A. (2006). Discrete homogenization in graphene sheet modeling.
Journal of Elasticity, 84, 33–68.
Dassault Systemes. Abaqus Unified FEA. Retrieved from http://www.3ds.com/products/simulia/portfolio/
abaqus/overview/
Gaim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6, 183–191.
Geim, A. K. (2009). Graphene: Status and prospects. Science, 324, 1530–1534.
Jones, J. E. (1924). On the determination of molecular fields-II: From the equations of state of
gas. Proceedings of the Royal Society of London, 106, 463–477.
Le Dret, H., & Raoult, A. (2011). Homogenization of hexagonal lattices. Comptees Rendus
Mathematique, 349, 111–114.
Natsuki, T., & Endo, M. (2004). Stress simulation of carbon nanotubes in tension and compression. Carbon,
(11), 2147–2151.
Parvaneh, V., Shariati, M., Torabi, H., & Sabeti, A. M. M. (2012). Torsional buckling behaviour of
SWCNTs using a molecular structural mechanics approach considering vacancy defects. Fullerenes,
Nanotubes and Carbon Nanostructures, 20, 709–720.
Poetscke, M., Rocha, C. G., Foa Torres, L. E. F., Roche, S., & Cuniberti, G. (2010). Modeling
graphene-based nanoelectromechanical devices. Physical Review B, 81, 193404.1–193404.4.
Sakhaee-Pour, A., Ahmadian, M. T., & Naghdabadi, R. (2008). Vibrational analysis of single-layered
graphene sheets. Nanotechnology, 19(085702), 1–7.
Shi, Z., Lu, H., Zhang, L., Yang, R., Wang, Y., Liu, D., … Zhang, G. (2012). Studies of graphene-based
nanoelectromechanical switches. Nano Research, 5, 82–87.
Suli, E., & Mayers, D. F. (2003). An introduction to numerical analysis. New York, NY: Cambridge
University Press.
Sun, Y., Wu, Q., & Shi, G. (2011). Graphene based new energy materials. Energy & Environmental
Science, 4, 1113–1132.
Theodosiou, T. C., & Saravanos, D. A. (2007). Molecular mechanics based finite element for carbon
nanotube modeling. Computer Modeling in Engineering & Science, 19, 121–134.
Tserpes, K. I. (2012). Strength of graphenes containing randomly dispersed vacancies. Acta Mechanica,
, 669–678.
Ypma, T. J. (1995). Historical development of the Newton–Raphson method. SIAM Review, 37,
–535.