Fatigue crack growth simulations of bi-material interfacial cracks under thermo-elastic loading by extended finite element method
Keywords:
XFEM, Paris law, bi-material, interfacial crack, stress intensity factorsAbstract
In this paper, fatigue crack growth simulations of bi-material interfacial cracks have been performed using extended finite element method (XFEM) under thermo-elastic loading. The material discontinuity (interface) has been modelled by a signed distance function whereas a strong discontinuity (crack) has been modelled by two functions i.e. Heaviside and asymptotic crack tip enrichment functions. The values of stress intensity factors are extracted from the XFEM solution by domain based interaction integral approach. Standard Paris fatigue crack growth law is used for the life estimation of various model problems. The results obtained by XFEM for an interfacial edge and centre cracks are compared with those obtained by finite element method based on a remeshing approach.
Downloads
References
Anderson T. L. (1995). Fracture mechanics fundamentals and applications. Boca Raton, FL: CRC
Press, ISBN 0-8493-4260-0, 1995.
Asferg, J. L., Poulsen, P. N., & Nielsen, L. O. (2007). A consistent partly cracked XFEM element for
cohesive crack growth. International Journal for Numerical Methods in Engineering, 72, 464–485.
Béchet, E., Moës, N., & Wohlmuth, B. (2009). A stable Lagrange multiplier space for stiff interface
condition within the extended finite element method. International Journal for Numerical Methods
in Engineering, 78, 931–954.
Belytschko, T., & Black, T. (1999). Elastic crack growth in finite elements with minimal remeshing.
International Journal for Numerical Methods in Engineering, 45, 601–620.
Belytschko, T., Gu, L., & Lu, Y. Y. (1994). Fracture and crack growth by element-free Galerkin methods.
Modelling Simulation Material Science Engineering, 2, 519–534.
Belytschko, T., Lu, Y. Y., & Gu, L. (1995). Crack propagation by element-free Galerkin methods. Engineering
Fracture Mechanics, 51, 295–315.
Boutabout, B., Chama, M., Abbes, B., Bouiadjra, B., Serier, B., & Lousdad, A. (2009). Effect of thermo
mechanical loads on the propagation of crack near the interface brittle/ductile. Computational Materials
Science, 46, 906–911.
Chopp, D. L., & Sukumar, N. (2003). Fatigue crack propagation of multiple coplanar cracks with the
coupled extended finite element/fast marching method. International Journal of Engineering Science,
, 845–869.
Drai, A., Bouiadjra, B. B., Meddah, M., & Benguediab, M. (2009). Analysis of interfacial fracture in
ceramic–metal assemblies under effect of thermal residual stresses. Computational Materials Science,
, 1119–1123.
Duflot, M. (2008). The extended finite element method in thermo-elastic fracture mechanics. International
Journal for Numerical Methods in Engineering, 74, 827–847.
Duflot, M., & Nguyen-Dang, H. (2004). A meshless method with enriched weight functions for fatigue
crack growth. International Journal for Numerical Methods in Engineering, 59, 1945–1961.
Erdogan, F., & Sih, G. (1963). On the crack extension in plates under plane loading and transverse
shear. Journal of Basic Engineering, 85, 519–527.
Géniaut, S., Massin, P., & Moës, N. (2007). A stable 3D contact formulation using X-FEM. European
Journal of Computational Mechanics, 16(2), 259–275.
Giner, E., Sukumar, N., Denia, F. D., & Fuenmayor, F. J. (2008). Extended finite element method for
fretting fatigue crack propagation. International Journal of Solids and Structure, 45, 5675–5687.
Gurumurthy, C. K., Jiao, J., Norris, L. G., Hui, C. Y., & Kramer, E. J. (1998). A thermo-mechanical
approach for fatigue testing of polymer bimaterial interfaces. Journal of Electronic Packaging, 120,
–378.
Hutchinson, J. W. (1992). Mixed mode cracking in layered materials. Advances in Applied Mechanics,
, 63–191.
Johnson, J., & Qu, J. (2006). An interaction integral method for computing mixed mode stress intensity
factors for curved bimaterial interface cracks in non-uniform temperature fields. Engineering Fracture
Mechanics, 74, 2282–2291.
Khandelwal, R., & Kishen, J. M. C. (2009). Computation of thermal stress intensity factors for bimaterial
interface cracks using domain integral method. Journal of Applied Mechanics, 76, 041010–41019.
Melenk, J., & Babuska, I. (1996). The partition of unity finite element method: Basic theory and applications.
Computer Methods in Applied Mechanics in Engineering, 139, 289–314.
Moës, N., Béchet, E., & Tourbier, M. (2006). Imposing Dirichlet boundary conditions in the
extended finite element method. International Journal for Numerical Methods in Engineering,
, 1641–1669.Moës, N., Cloirec, M., Cartraud, P., & Remacle, J. F. (2003). A computational approach to handle complex
microstructure geometries. Computer Methods in Applied Mechanics and Engineering, 192,
–3177.
Moës, N., Dolbow, J., & Belytschko, T. (1999). A finite element method for crack growth without remeshing.
International Journal for Numerical Methods in Engineering, 46, 135–150.
Mohammadi, S. (2008). Extended finite element method for fracture analysis of structures. Singapore:
Blackwell, ISBN-978-1-4051-7060-4.
Olsson, M., & Giannakopoulos, A. E. (1997). Elastoplastic analysis of layered materials under thermal
loading: Edge cracks parallel to the interface. International Journal of Fracture, 85, 81–97.
Pant, M., Singh, I. V., & Mishra, B. K. (2011). Evaluation of mixed mode stress intensity factors for
interface cracks using EFGM. Applied Mathematical Modeling, 35, 3443–3459.
Paris, P. C., Gomez, M. P., & Anderson, W. E. (1961). A rational analytic theory of fatigue. The Trend
in Engineering, 13, 9–14.
Pathak, H., Singh, A., & Singh, I. V. (2012). Numerical simulation of bi-material interfacial cracks using
EFGM and XFEM. International Journal of Mechanics and Materials in Design, 8, 9–36.
Petrova, V., & Schmauder, S. (2011). Thermal fracture of a functionally graded/homogeneous bimaterial
with system of cracks. Theoretical and Applied Fracture Mechanics, 55, 148–157.
Rakin, M., Kolednik, O., Medjo, B., Simha, N. K., & Fischer, F. D. (2009). A case study on the effect
of thermal residual stresses on the crack-driving force in linear-elastic bimaterials. International
Journal of Mechanical Sciences, 51(7), 531–540.
Sih, G. C. (1962). On singular character of thermal stress near a crack tip. Journal of Applied Mechanics,
, 587–598.
Sills, L. B., & Dolev, O. (2004). The conservative M-integral for thermo-elastic problems. International
Journal of Fracture, 125, 149–170.
Singh, I. V., Mishra, B. K., Bhattacharya, S., & Patil, R. U. (2011). The numerical simulation of fatigue
crack growth using extended finite element method. International Journal of Fatigue, 36, 109–119.
Stolarska, M., & Chopp, D. L. (2003). Modeling thermal fatigue cracking in integrated circuits by level
sets and the extended finite element method. International Journal of Engineering Science, 41,
–2410.
Stolarska, M., Chopp, D. L., Moës, N., & Belytschko, T. (2001). Modeling crack growth by level sets
in the extended finite element method. International Journal for Numerical Methods in Engineering,
, 943–960.
Strouboulis, T., Babuska, I., & Copps, K. (2000). The design and analysis of the generalized finite element
method. Computer Methods in Applied Mechanics and Engineering, 181, 43–69.
Strouboulis, T., Copps, K., & Babuska, I. (2000). The generalized finite element method: An example
of its implementation and illustration of its performance. International Journal of Numerical Methods
in Engineering, 47, 1401–1417.
Sukumar, N., Chopp, D. L., Moës, N., & Belytschko, T. (2001). Modeling holes and inclusions by level
sets in the extended finite element method. Computer Methods in Applied Mechanics in Engineering,
, 6183–6200.
Sukumar, N., Huang, Z. Y., Prevost, J. H., & Suo, Z. (2004). Partition of unity enrichment for bimaterial
interface cracks. International Journal for Numerical Methods in Engineering, 59, 1075–1102.
Sukumar, N., Moës, N., Moran, B., & Belytschko, T. (2000). Extended finite element method for threedimensional
crack modeling. International Journal for Numerical Methods in Engineering, 48,
–1570.
Unger, J. F., Eckardt, S., & Könke, C. (2007). Modelling of cohesive crack growth in concrete structures
with the extended finite element method. Computer Methods in Applied Mechanics in Engineering,
, 4087–4100.
Ventura, G., Xu, J. X., & Belytschko, T. (2002). A vector level set method and new discontinuity
approximations for crack growth by EFG. International Journal for Numerical Methods in Engineering,
, 923–944.
Yan, A. M., & Nguyen Dang, H. (1995). Multiple-cracked fatigue crack growth by BEM. Computational
Mechanics, 16, 273–280.
Yan, X. (2006). A boundary element modeling of fatigue crack growth in a plane elastic plate. Mechanics
Research Communications, 33, 470–481.
Zi, G., & Belytschko, T. (2003). New crack-tip elements for XFEM and applications to cohesive cracks.
International Journal for Numerical Methods in Engineering, 57, 2221–2240.