An enhanced discrete Mindlin finite element model using a zigzag function

Authors

  • Lakhdar Sedira Mechanical Engineering Laboratory (LGM), University of Biskra, BP145, 07000 Biskra, Algeria; and Laboratory of Engineering and Material Sciences, University of Reims Champagne-Ardenne, ESIEC, Esp. Rolland Garros, BP 1029, F-51686, Reims, France;
  • Rezak Ayad Laboratory of Engineering and Material Sciences, University of Reims Champagne-Ardenne, ESIEC, Esp. Rolland Garros, BP 1029, F-51686, Reims, France
  • Hamid Sabhi Laboratory of Engineering and Material Sciences, University of Reims Champagne-Ardenne, ESIEC, Esp. Rolland Garros, BP 1029, F-51686, Reims, France;
  • Mabrouk Hecini Mechanical Engineering Laboratory (LGM), University of Biskra, BP145, 07000 Biskra, Algeria
  • Siham Sakami Faculty of Sciences and Technology, Group of Research in Civil and Geo-Engineering, BP 549, Av. Abdelkarim Elkhattabi, Guéliz, Marrakech, Morocco

DOI:

https://doi.org/10.13052/17797179.2012.702434

Keywords:

finite element, displacement discrete model, multilayer plate, zigzag function

Abstract

The present work deals with the formulation and the evaluation of a discrete finite element model for Reissner/Mindlin composite plates, including the introduction of zigzag form in order to improve plane and shear stress accuracy. The model is characterised by a piecewise linear variation of displacement, which allows to fulfil the stress continuity requirements. For this purpose, a new four-node quadrilateral enhanced finite element based on a quadratic displacement field is proposed. In the second version, it incorporates two additional zigzag terms and does not require shear correction. The element is validated across some known problems in the literature, highlighting the improvement of thickness stress distributions, by comparison with the initial model without zigzag function.

Downloads

Download data is not yet available.

References

Ambartsumian, S.A. (1969). Theory of anisotropic plates: Strength, Stability and Vibrations. Translated

from Russian by T. Cheron and edited by J. E. Ashton, Technomic.

Ayad, R. (2002). Contribution à la Modélisation numérique pour l’analyse des solides et des structures,

et pour la mise en forme des fluides non newtoniens. Application à des matériaux d’emballage

(HDR Thesis, University of Reims Champagne Ardenne).

Ayad, R., Dhatt, G., & Batoz, J.L. (1998). A new hybrid-mixed variational approach for Reissner–Mindlin

plates. The MiSP model. International Journal for Numerical Methods in Engineering, 42(7),

–1179.

Ayad, R., & Rigolot, A. (2002). An improved four-node hybrid-mixed element based upon Mindlin’s

plate theory. International Journal for Numerical Methods in Engineering, 55(6), 705–731.

Ayad, R., Talbi, N., & Ghomari, T. (2009). Modified discrete Mindlin hypothesises for laminated composite

structures. Composites Science and Technology, 69(1), 125–128. doi: 10.1016/j.compscitech.

10.038

Batoz, J.-L., & Tahar, M.B. (1982). Evaluation of a new quadrilateral thin plate bending element. International

Journal for Numerical Methods in Engineering, 18(11), 1655–1677. doi: 10.1002/

nme.1620181106

Carrera, E. (1996). C0 Reissner–Mindlin multilayred plate elements including zig-zag and interlaminar

stress continuity. International Journal for Numerical Methods in Engineering, 39(11), 1797–1820.

Carrera, E. (2002). Theories and finite elements for multilayered, anisotropic, composite plates and

shells. Archives of Computational Methods in Engineering, 9(2), 87–140. doi: 10.1007/bf02736649

Table 6. Normal stresses in simple supported square sandwich (f/c/f) plate, under sinusoidal load.

DMQP/ml

(88)

DMQP/ml

(1919)

DMQPz

(66)

HOZZT

(88)

PRHSDT

(88)

PFSDT

(88) Pagano

a=h ¼ 4

r1x

.7375 .73,125 1.5206 1.5158 1.4539 .8385 1.556

r2x

.588 .586 .2210 – .3181 .6708 .233

.0028 .00,286 .0004 – .0012 .0024

r1y

.2343 .235 .2494 .2495 .2522 .1565 .2595

r2y

.1875 .188 .1621 – .1631 .1252 –

.008 .008 .0066 – .0069 .0053 –

a=h ¼ 10

r1x

1.02 1.1568 1.1438 1.1453 1.0475 1.152

r2x

.796 .793 .6315 – .6193 .8380 .629

.00,215 .00,215 .00,101 – .0018 .0020 –

r1y

.107 .107 .1088 .1082 .1101 .0806 .1099

r2y

.0855 .0855 .0823 – .0832 .0645 –

.00,364 .00,364 .00,305 – .0035 .0027 –

Carrera, E., & Demasi, L. (2002). Classical and advanced multilayered plate elements based upon PVD

and RMVT. Part 1: Derivation of finite element matrices. International Journal for Numerical Methods

in Engineering, 55(2), 191–231. doi: 10.1002/nme.492

Di-Sciuva, M. (1992). Multilayered anisotropic plate models with continuous interlaminar stresses. Composite

Structures, 22(3), 149–167. doi: 10.1016/0263-8223(92)90003-u

Engblom, J.J., & Ochoa, O.O. (1985). Through-the-thickness stress predictions for laminated plates of

advanced composite materials. International Journal for Numerical Methods in Engineering, 21(10),

–1776. doi: 10.1002/nme.1620211003

Fares, M.E., & Elmarghany, M.K. (2008). A refined zigzag nonlinear first-order shear deformation theory

of composite laminated plates. Composite Structures, 82(1), 71–83. doi: 10.1016/j.compstruct.

12.007

Katili, I. (1993). A new discrete Kirchhoff–Mindlin element based on Mindlin–Reissner plate theory

and assumed shear strain fields – part II: An extended DKQ element for thick-plate bending analysis.

International Journal for Numerical Methods in Engineering, 36(11), 1885–1908. doi: 10.1002/

nme.1620361107

Lardeur, P. (1990). Développement et évaluation de deux nouveaux éléments finis de plaques et coques

composites avec influence du cisaillement transversal (PhD Thesis, University of Technology of

Compiègne, France).

Lekhnitskii, S.G. (1935). Strength calculation of composite beams, Vestnik inzhen i tekhnikov.

Mindlin, R. (1951). Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates.

Journal of Applied Mechanics, 18(1), 31–38.

Murakami, H. (1986). Laminated composite plate theory with improved in-plane responses. Journal of

Applied Mechanics, 53, 661–666.

Pagano, N.J. (1970). Exact solutions for rectangular bidirectional composites and sandwich plates. Journal

of Composite Materials, 1(4), 257. doi: 10.1016/0010-4361(70)90076-5

Rath, B.K., & Das, Y.C. (1973). Vibration of layered shells. Journal of Sound and Vibration, 28(4),

–757. doi: 10.1016/s0022-460x(73)80146-4

Reddy, J.N. (1984). Simple higher-order theory for laminated composite plates. Journal of Applied

Mechanics, Transactions ASME, 51(4), 745–752.

Reissner, E. (1943). The effect of transverse shear deformation on the bending of elasticplates. Journal

of applied Mechanics, 12, A69–A77.

Sakami S. (2008). Modélisation numérique des structures composites multicouches à l’aide d’une

approche discrète au sens de Mindlin. Le modèle DDM (Displacement Discrete Mindlin) (Doctorat

Thesis, University of Reims Champagne Ardenne).

Tafla, A., Ayad, R., & Sedira, L. (2010). A Mindlin multilayered hybrid-mixed approach for laminated and

sandwich structures without shear correction factors. Européenne de Mécanique Numérique [European

Journal of Computational Mechanics/Revue], 19(8), 725–742. doi: 10.3166/ejcm.19.725-742

Topdar, P., Sheikh, A.H., & Dhang, N. (2003). Finite element analysis of composite and sandwich plates

using a continuous inter-laminar shear stress model. Journal of Sandwich Structures and Materials,

(3), 207–231. doi: 10.1177/10996362030 05003001.

Whitney, J.M. (1969). The effect of transverse shear deformation on the bending of laminated plates.

Journal of Composite Materials, 3(3), 534–547. doi: 10.1177/002199836900300316

Downloads

Published

2012-02-07

How to Cite

Sedira, L. ., Ayad, R. ., Sabhi, H. ., Hecini, M. ., & Sakami, S. . (2012). An enhanced discrete Mindlin finite element model using a zigzag function . European Journal of Computational Mechanics, 21(1-2), 122–140. https://doi.org/10.13052/17797179.2012.702434

Issue

Section

Original Article