Domain decomposition with discrete element simulations using shared-memory parallel computing for railways applications
DOI:
https://doi.org/10.13052/17797179.2012.714723Keywords:
non-smooth contact dynamics, parallelisation, LMGC90, ballast, maintenanceAbstract
Numerical simulation with discrete elements leads to several issues for large-scale problems and long loading times, as for the granular dynamic simulations of the ballasted railway behaviour. To reduce computational costs, we study the use of two strategies: domain decomposition methods and shared-memory parallelisation with OpenMP. An example of a maintenance process, the tamping, on a portion of railway track with seven sleepers, is simulated.
Downloads
References
Azéma, E. (2007). Etude numérique des matériaux granulaires à grains polyédriques: rhéologie quasistatique,
dynamique vibratoire, application au procédé de bourrage du ballast (Numerical study of
granular material composed by polyedric grains : quasi-static rheology, vibrationnal dynamic and
application to tamping process) (PhD Thesis). Université Montpellier 2.
Azéma, E., Radjaï, F., & Saussine, G. (2009). Quasistatic rheology, force transmission and fabric properties
of a packing of irregular polyhedral particles. Mechanics of Materials, 41, 721–741.
Cambou, B., & Jean, M. (2001). Micromécanique des matériaux granulaires. (Micro-mechanical of
granular materials) Traité MIM – Mécanique et ingénierie des matériaux. Hermes Science Europe
Ltd.
Chau, M. (2005). Algorithmes Parallèles asynchrones pour la simulation numérique (Parallel asynchronous
algorithm for numerical simulation) (PhD Thesis). Institut National Polytechnique de
Toulouse.
Dubois, F., & Renouf, M. (2007, June). Numerical strategies and software architecture dedicated to the
modelling of dynamical systems in interaction. Application to multibody dynamics. In Multibody
, ECCOMAS Thematic Conference, Milano, Italy.
Hoang, T.M.P., Alart, P., Dureisseix, D., & Saussine, G. (2011). A domain decomposition method for
granular dynamics using discrete elements and application to railway ballast. Annals of Solid and
Structural Mechanics, 2(2–4), 87–98.
Hoang, T.M.P., Saussine, G., Dureisseix, D., & Alart, P. (2011, May). Behaviour of a portion of railway
track under maintenance operation. In 9th World Congress on Railway Research – WCRR2011,
Lille, France.
Iceta, D. (2010). Simulation numérique de la dynamique des systèmes discrets par décomposition de
domaine et application aux milieux granulaires (Numerical simulation of the dynamic of discrete
systems using domain decomposition. Granular media application) (PhD Thesis). Université Montpellier
Iceta, D., Dureisseix, D., & Alart, P. (2009). Mixed versus impulse-oriented domain decomposition
method for granular dynamics. European Journal of Computational Mechanics, 18(5–6), 429–443.
Jean, M. (1999). The non-smooth contact dynamics method. Computer Methods in Applied Mechanics
and Engineering, 177, 235–257.
Moreau, J.J. (1999). Numerical aspects of sweeping process. Computer Methods in Applied Mechanics
and Engineering, 177, 329–349.
Paderno, C. (2010). Comportement du ballast sous l’action du bourrage et du trafic ferroviaire (Ballast
behaviour under tamping process and railway traffic) (Thèse de doctorat). EPFL.
Perales, R., Saussine, G., Milesi, N., & Radjai, F. (2009). Tamping process optimization. In Euromech
conference ESMC2009 (pp. 7–11). Lisbonne, Portugal.
Renouf, M. (2004). Optimisation numérique et calcul parallele pour l’étude des milieux divisés bi- et
tridimensionnels (Numerical Optimisation and Parallel Computing applied to the simulation of 2D/
D discrete element) (PhD Thesis). Université Montpellier 2.
Saussine, G. (2004) Contribution à la modélisation de granulats tridimensionnels: Application au ballast
(Contribution for the modelling of three-dimensional granular matter : study of railway ballast)
(PhD Thesis). Université Montpellier 2.
Solomon, B. (2001). Railway maintenance. New York: MBI.
Visseq, V., Martin, A., Iceta, D., Azema, E., Dureisseix, D., & Alart, P. (2012). Dense granular dynamics
analysis by a domain decomposition approach. Computational Mechanics, 49(6), 709–723.