Numerical convergence and stability of mixed formulation with X-FEM cut-off

Authors

  • S. Amdouni LAMSIN-ENIT, Université Tunis El Manar, B.P. 37, 1002 Tunis-Belvédère, Tunisie; and Université de Lyon, CNRS, INSALyon, ICJ UMR5208, LaMCoS UMR5259, F-69621 Villeurbanne, France
  • K. Mansouri LGC-ENIT, Université Tunis El Manar, B.P. 37, 1002 Tunis-Belvédère, Tunisie; and Université de Lyon, CNRS, INSALyon, ICJ UMR5208, LaMCoS UMR5259, F-69621 Villeurbanne, France
  • Y. Renard Université de Lyon, CNRS, INSALyon, ICJ UMR5208, LaMCoS UMR5259, F-69621 Villeurbanne, France
  • M. Arfaoui bLGC-ENIT, Université Tunis El Manar, B.P. 37, 1002 Tunis-Belvédère, Tunisie
  • M. Moakher LAMSIN-ENIT, Université Tunis El Manar, B.P. 37, 1002 Tunis-Belvédère, Tunisie

DOI:

https://doi.org/10.13052/17797179.2012.714724

Keywords:

X-FEM cut-off, mixed formulation, linear elasticity, error estimate

Abstract

In this paper, we are concerned with the mathematical and numerical analysis of convergence and stability of the mixed formulation for incompressible elasticity in cracked domains. The objective is to extend the extended finite element method (X-FEM) cut-off analysis done in the case of compressible elasticity to the incompressible one. A mathematical proof of the inf-sup condition of the discrete mixed formulation with X-FEM is established for some enriched fields. We also give a mathematical result of quasi-optimal error estimate. Finally, we validate these results with numerical tests.

Downloads

Download data is not yet available.

References

Adams, R., Sobolev spaces, New York: Academic Press, 1975.

Brezzi, F., & Fortin, M. (1991). Mixed and hybrid finite element methods (Vol. 15). New York: Springer

Series in Computational Mathematics.

Chahine, E., Labrode, P., & Renard, Y. (2008). Crack tip enrichment in the X-FEM method using a cutoff

function. International Journal for Numerical Method in Engineering, 75(6), 629–646.

Chapelle, D., & Bathe, K.J. (1993). The inf-sup test. Computers and Structures, 47(4–5), 537–545.

Chen, Z., & Nochetto, R.H. (2000). Residual-type a posteriori error estimates for elliptic obstacle problems.

Numerische Mathematik, 84, 527–548.

Laborde, P., Renard, Y., Pommier, J., & Salaun, M. (2005). High order extended finite element method

for cracked domains. International Journal for Numerical Method in Engineering, 64, 354–381.

Legrain, G., Moes, N., & Huerta, A. (2008). Stability of incompressible formulations enriched with XFEM.

Computer Methods in Applied Mechanics and Engineering, 197, 1835–1849.

Moës, N., Dolbow, J., & Belytschko, T. (1999). A finite element method for crack growth without remeshing.

International Journal for Numerical Methods in Engineering, 46, 131–150.

Nicaise, S., Renard, Y., & Chahine, E. (2011). Optimal convergence analysis for the extended finite element

method. International Journal for Numerical Methods in Engineering, 86, 528–548.

Downloads

Published

2012-06-06

How to Cite

Amdouni, S. ., Mansouri, K. ., Renard, Y., Arfaoui, M. ., & Moakher, M. . (2012). Numerical convergence and stability of mixed formulation with X-FEM cut-off. European Journal of Computational Mechanics, 21(3-6), 160–173. https://doi.org/10.13052/17797179.2012.714724

Issue

Section

Original Article