Numerical comparison of reduced order models for non-linear vibrations of damped plates

Authors

  • F. Boumediene Laboratoire d’Ingénierie des Matériaux de Bretagne, Université Européenne de Bretagne, Université de Bretagne Sud, Rue de Saint Maudé, BP 92116, 56321 Lorient cedex, France; Laboratoire de Mécanique Avancée, Faculté de Génie Mécanique & Génie des Procédés, USTHB, BP 32, El Alia, 16111 Bab Ezzouar, Algiers, Algeria
  • L. Duigou Laboratoire d’Ingénierie des Matériaux de Bretagne, Université Européenne de Bretagne, Université de Bretagne Sud, Rue de Saint Maudé, BP 92116, 56321 Lorient cedex, France
  • A. Miloudi Laboratoire de Mécanique Avancée, Faculté de Génie Mécanique & Génie des Procédés, USTHB, BP 32, El Alia, 16111 Bab Ezzouar, Algiers, Algeria
  • J.M. Cadou Laboratoire d’Ingénierie des Matériaux de Bretagne, Université Européenne de Bretagne, Université de Bretagne Sud, Rue de Saint Maudé, BP 92116, 56321 Lorient cedex, France

DOI:

https://doi.org/10.13052/17797179.2012.719317

Keywords:

non-linear vibration, damping, asymptotic numerical method, harmonic balance method, plates, reduced order model, proper orthogonal decomposition

Abstract

This work deals with the computation of the non-linear solutions of the vibration of damped plates by coupling a harmonic balance method and the asymptotic numerical method. These computations can lead to lengthy central processing unit (CPU) times if the solution sought contains an important number of harmonics. In this study, we propose two reduced order models which can be applied to solve this type of problem. Both reduced methods are based on a first computation carried out with a small number of harmonics (here two). Numerical examples of plate vibration show that these algorithms help save a great deal of computational time and can be applied to problems involving numerous harmonics.

Downloads

Download data is not yet available.

References

Abdoun, F., Azrar, L., Daya, E.M., & Potier-Ferry, M. (2009). Forced harmonic response of viscoelastic

structures by an asymptotic numerical method. Computers & Structures, 87, 91–100.

Amabili, M., Sarkar, A., & Paıdoussis, M.P. (2003). Reduced-order models for nonlinear vibrations of

cylindrical shells via the proper orthogonal decomposition method. Journal of Fluids and Structures,

, 227–250.

Antoulas, A.C., & Sorensen, D.C. (2001). Approximation of large-scale dynamical systems: An overview.

International Journal of Applied Mathematics and Computer Science, 11(5), 1093–1121.

Batoz, J.-L., & Dhatt, G. (1992). Modeling of structures by the finite element method (Vol. 3: shells).

Paris: Hermès.

Boumediene, F., Duigou, L., Boutyour, E.H., Miloudi, A., & Cadou, J.M. (2011). Nonlinear forced

vibration of damped plates coupling asymptotic numerical method and reduction models. Computational

Mechanics, 47(4), 359–377.

Boumediene, F., Miloudi, A., Cadou, J.M., Duigou, L., & Boutyour, E.H. (2009). Nonlinear forced

vibration of damped plates by an asymptotic numerical method. Computers & Structures, 87, 1508–

Brezillon, A., Girault, G., & Cadou, J.M. (2010). A numerical algorithm coupling a bifurcating indicator

and a direct method for the computation of Hopf bifurcation points in fluid mechanics. Computers

& Fluids, 39(7), 1226–1240.

Cadou, J.M., Cochelin, B., Damil, N., & Potier-Ferry, M. (2001). Asymptotic numerical method for stationary

Navier-Stokes equations and with Petrov-Galerkin formulation. International Journal of

Numerical Methods in Engineering, 50, 825–845.

Cadou, J.M., & Potier-Ferry, M. (2010). A solver combining reduced basis and convergence acceleration

with applications in non-linear elasticity. International Journal for Numerical Methods in Biomedical,

, 1604–1617.

Cochelin, B., Damil, N., & Potier-Ferry, M. (1994). Asymptotic numerical methods and Padé approximants

for non-linear elastic structures. International Journal for Numerical methods in Engineering,

, 1187–1213.

Cochelin, B., & Vergez, C. (2009). A high order purely frequency-based harmonic balance formulation

for continuation of periodic solutions. Journal of Sound and Vibration, 324, 243–262.

Daridon, L., Wattrisse, B., Chrysochoos, A., & Potier-Ferry, M. (2011). Solving fracture problems using

an asymptotic numerical method. Computers & Structures, 89(5–6), 476–484.

Elhage-Hussein, A., Potier-Ferry, M., & Damil, N. (2000). A numerical continuation method based on

Padé approximants. International Journal of Solids and Structures, 37, 6981–7001.

Goncalves, P.B., Silva, F.M.A., & Del Prado, Z.J.G.N. (2008). Low-dimensional models for the nonlinear

vibration analysis of cylindrical shells based on a perturbation procedure and proper orthogonal

decomposition. Journal of Sound and Vibration, 315, 641–663.

Holmes, P., Lumley, J.L., & Berkooz, G. (1996). Turbulence, coherent structures, dynamical systems

and symmetry. Cambridge: Cambridge University Press.

LaBryer, A., & Attar, P.J. (2010). A harmonic balance approach for large-scale problems in nonlinear

structural dynamics. Computers & Structures, 88, 1002–1014.

Lall, S., Krysl, P., & Marsden, J.E. (2003). Structure-preserving model reduction for mechanical systems.

Physica D: Nonlinear Phenomena, 184, 304–318.

Médale, M., & Cochelin, B. (2009). A parallel computer implementation of the asymptotic numerical

method to study thermal convection instabilities. Journal of Computational Physics, 228(22), 8249–

Mickens R.E. (2010). Truly nonlinear oscillations. Harmonic Balance, parameter expansions, iteration,

and averaging methods. USA: World Scientific Publishing Co. Pte. Ltd.

Mottaqui, H., Braikat, B., & Damil, N. (2010). Discussion about parametrization in the asymptotic

numerical method: Appmlication to nonlinear elastic shell. Computer Methods in Applied Mechanics

and Engineering, 199(25–28), 1701–1709.

Potier-Ferry, M., Damil, N., Braikat, B., Descamps, J., Cadou, J.-M., Lei Cao, H., & Elhage Hussein,

A. (1997). Treatment of strong non-linearities by the asymptotic numerical method. Comptes Rendus

de l’Académie des Sciences - Series II, b324(3), 171–177.

Wriggers, P. (2008). Nonlinear finite element methods. Berlin: Springer-Verlag.

Yvonnet, J., & He, Q.C. (2007). The reduced model multiscale method (R3M) for the non-linear homogenization

of hyperelastic media at finite strains. Journal of Computational Physics, 223, 341–368.

Downloads

Published

2012-06-06

How to Cite

Boumediene, F. ., Duigou, L. ., Miloudi, A. ., & Cadou, J. . (2012). Numerical comparison of reduced order models for non-linear vibrations of damped plates. European Journal of Computational Mechanics, 21(3-6), 174–183. https://doi.org/10.13052/17797179.2012.719317

Issue

Section

Original Article