A Newton–Krylov method for solid mechanics

Authors

  • N. Tardieu LAMSID, EDF-R&D, 1 av du Gal de Gaulle, 92141 Clamart Cedex, France; bNECS, 196 rue Houdan, 92330 Sceaux, France
  • E. Cheignon LAMSID, EDF-R&D, 1 av du Gal de Gaulle, 92141 Clamart Cedex, France; bNECS, 196 rue Houdan, 92330 Sceaux, France

DOI:

https://doi.org/10.13052/17797179.2012.721501

Keywords:

Newton’s method, iterative solver, preconditioning

Abstract

In this article a Newton–Krylov method is discussed, which is part of the inexact Newton’s methods family. They combine iterative solution methods, especially Krylov methods (conjugate gradient, GMRES, etc.) with the Newton’s method, whereas, in solid mechanics, direct solvers are often preferred for the solution of linearised systems. After having introduced a versatile and robust preconditioner, we discuss the efficiency of this approach on a highly non-linear industrial problem.

Downloads

Download data is not yet available.

References

Adams, M. (January 1999). Parallel multigrid algorithms for unstructured 3d large deformation elasticity

and plasticity finite element problems. Technical Report UCB/CSD-99–1036, EECS Department,

University of California, Berkeley.

Amestoy, P.R., Guermouche, A., L’Excellent, J.-Y., & Pralet, S. (2006). Hybrid scheduling for the parallel

solution of linear systems. Parallel Computing, 32(2), 136–156.

Balay, S., Brown, J., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, … Zhang, H. (2011). PETSc

Web page. Retrieved from http://www.mcs.anl.gov/petsc

Code_Aster. (2011a). Code_Aster web page. Retrieved from http://www.code-aster.org

Code_Aster. (2011b). Overview of the conjugate gradient: GCPC and use of PETSc. Retrieved from

http://www.code aster.org/V2/doc/default/en/man r/r6/r6.01.02.pdf

Dostal, Z., Horak, D., & Kucera, R. (2006). Total FETI – an easier implementable variant of the FETI

method for numerical solution of elliptic PDE. Communications in Numerical Methods in Engineering,

(12), 1155–1162.

Eisenstat, S.C., & Walker, H.F. (1996). Choosing the forcing terms in an inexact Newton method. SIAM

Journal on Scientific Computing, 17(1), 16–32.

Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K., & Rixen, D. (2001). FETI-DP: A dual-primal unified

FETI method. I. A faster alternative to the two-level FETI method. International Journal for Numerical

Methods in Engineering, 50(7), 1523–1544.

Farhat, C., & Roux, F.-X. (1991). A method of finite element tearing and interconnecting and its parallel

solution algorithm. International Journal for Numerical Methods in Engineering, 32(6), 1205–1227.

Kelley, C.T. (1995). Iterative methods for solving linear and nonlinear equations. In: Frontiers in applied

mathematics, Vol. 16. Philadelphia, PA: SIAM.

Kelley, C.T. (2003). Solving nonlinear equations with Newton’s method. Philadelphia, PA: SIAM.

Mandel, Jan. (1993). Balancing domain decomposition. Communications in Numerical Methods in Engineering,

, 233–241.

Saad, Y. (2005). Iterative methods for sparse linear systems. Philadelphia, PA: SIAM.

Shewchuk, J.R. (1994). An introduction to the conjugate gradient method without the agonizing pain.

Technical Report, University of California at Berkeley.

Vanek, P., Mandel, J., & Brezina, M. (1996). Algebraic multigrid by smoothed aggregation for second

and fourth order elliptic problems. Computing, 3, 179–196.

Downloads

Published

2012-06-06

How to Cite

Tardieu, N., & Cheignon, E. . (2012). A Newton–Krylov method for solid mechanics. European Journal of Computational Mechanics, 21(3-6), 374–384. https://doi.org/10.13052/17797179.2012.721501

Issue

Section

Original Article