A Newton–Krylov method for solid mechanics
DOI:
https://doi.org/10.13052/17797179.2012.721501Keywords:
Newton’s method, iterative solver, preconditioningAbstract
In this article a Newton–Krylov method is discussed, which is part of the inexact Newton’s methods family. They combine iterative solution methods, especially Krylov methods (conjugate gradient, GMRES, etc.) with the Newton’s method, whereas, in solid mechanics, direct solvers are often preferred for the solution of linearised systems. After having introduced a versatile and robust preconditioner, we discuss the efficiency of this approach on a highly non-linear industrial problem.
Downloads
References
Adams, M. (January 1999). Parallel multigrid algorithms for unstructured 3d large deformation elasticity
and plasticity finite element problems. Technical Report UCB/CSD-99–1036, EECS Department,
University of California, Berkeley.
Amestoy, P.R., Guermouche, A., L’Excellent, J.-Y., & Pralet, S. (2006). Hybrid scheduling for the parallel
solution of linear systems. Parallel Computing, 32(2), 136–156.
Balay, S., Brown, J., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, … Zhang, H. (2011). PETSc
Web page. Retrieved from http://www.mcs.anl.gov/petsc
Code_Aster. (2011a). Code_Aster web page. Retrieved from http://www.code-aster.org
Code_Aster. (2011b). Overview of the conjugate gradient: GCPC and use of PETSc. Retrieved from
http://www.code aster.org/V2/doc/default/en/man r/r6/r6.01.02.pdf
Dostal, Z., Horak, D., & Kucera, R. (2006). Total FETI – an easier implementable variant of the FETI
method for numerical solution of elliptic PDE. Communications in Numerical Methods in Engineering,
(12), 1155–1162.
Eisenstat, S.C., & Walker, H.F. (1996). Choosing the forcing terms in an inexact Newton method. SIAM
Journal on Scientific Computing, 17(1), 16–32.
Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K., & Rixen, D. (2001). FETI-DP: A dual-primal unified
FETI method. I. A faster alternative to the two-level FETI method. International Journal for Numerical
Methods in Engineering, 50(7), 1523–1544.
Farhat, C., & Roux, F.-X. (1991). A method of finite element tearing and interconnecting and its parallel
solution algorithm. International Journal for Numerical Methods in Engineering, 32(6), 1205–1227.
Kelley, C.T. (1995). Iterative methods for solving linear and nonlinear equations. In: Frontiers in applied
mathematics, Vol. 16. Philadelphia, PA: SIAM.
Kelley, C.T. (2003). Solving nonlinear equations with Newton’s method. Philadelphia, PA: SIAM.
Mandel, Jan. (1993). Balancing domain decomposition. Communications in Numerical Methods in Engineering,
, 233–241.
Saad, Y. (2005). Iterative methods for sparse linear systems. Philadelphia, PA: SIAM.
Shewchuk, J.R. (1994). An introduction to the conjugate gradient method without the agonizing pain.
Technical Report, University of California at Berkeley.
Vanek, P., Mandel, J., & Brezina, M. (1996). Algebraic multigrid by smoothed aggregation for second
and fourth order elliptic problems. Computing, 3, 179–196.