On a hybrid Laplace-time domain approach to dynamic interaction problems

Authors

  • A. Nieto Ferro LMSSMat (CNRS UMR 8579), École Centrale Paris, Grande Voie des Vignes, 92295 Châtenay- Malabry, France; EDF R&D (AMA Dept.)/LaMSID (CNRS UMR 2832), Avenue du Général de Gaulle 1, 92141 Clamart, France
  • D. Clouteau LMSSMat (CNRS UMR 8579), École Centrale Paris, Grande Voie des Vignes, 92295 Châtenay- Malabry, France
  • N. Greffet EDF R&D (AMA Dept.)/LaMSID (CNRS UMR 2832), Avenue du Général de Gaulle 1, 92141 Clamart, France
  • G. Devésa EDF R&D (AMA Dept.)/LaMSID (CNRS UMR 2832), Avenue du Général de Gaulle 1, 92141 Clamart, France

DOI:

https://doi.org/10.13052/17797179.2012.731254

Keywords:

impedance matrix, convolution quadrature method, dynamic soil–structure interaction

Abstract

Dynamic interaction problems between two subdomains lead in time to convolution integrals on the interface when one (linear) subdomain is modelled by an impedance operator and the other exhibits non-linear behaviour. In the present work, a convolution quadrature method is used to address a Laplace transform-based approach to evaluate these convolution products. Its properties are discussed on some numerical soil–structure interaction applications: one that is fully linear and the other showing material non-linearities.

Downloads

Download data is not yet available.

References

Cottereau, R., Clouteau, D., Soize, C., & Cambier, S. (2006). Probabilistic nonparametric models of

impedance matrices. Application to the seismic design of a structure. European Journal of Computational

Mechanics, 15(1–3), 131–142.

Darbre, G., & Wolf, J. (1988). Criterion of stability and implementation issues of hybrid frequency time

domain procedure for non-linear dynamic analysis. Earthquake Engineering and Structural

Dynamics, 16(4), 569–581.

François, S., & Degrande G. (2005). A time domain coupled boundary element-finite element method for

the dynamic response of structures. In J.L. Bento Coelho (Ed.), Proceedings of the 12th International

Congress on Sound and Vibration, July 2005, Lisbon, Portugal.

Gaul, L., & Schanz, M. (1999). A comparative study of three boundary element approaches to calculate

the transient response of viscoelastic solids with unbounded domains. Computer Methods in Applied

Mechanics and Engineering, 179, 111–123.

Karpel, M. (1982). Design for active flutter suppression and gust alleviating using state-space unsteady

aeroelastic modelling. Journal of Aircraft, 19(3), 221–227.

Lubich, C. (1988a). Convolution quadrature and discretized operational calculus I. Numerische Mathematik,

, 129–145.

Lubich, C. (1988b). Convolution quadrature and discretized operational calculus II. Numerische Mathematik,

, 413–425.

Lubich, C. (1994). On the multistep time discretization of linear initial-boundary value problems and

their boundary integral equations. Numerische Mathematik, 67, 365–389.

Moser, W., Antes, H., & Beer, G. (2005a). A Duhamel integral based approach to one-dimensional wave

propagation analysis in layered media. Computational Mechanics, 35, 115–126.

Moser, W., Antes, H., & Beer, G. (2005b). Soil–structure interaction and wave propagation problems in

D by a Duhamel integral based approach and the convolution quadrature method. Computational

Mechanics, 36, 431–443.

Nieto Ferro, A., Clouteau, D., Greffet, N., & Devésa, G. (2011). Hybrid Laplace-time domain approach

for nonlinear dynamic soil–structure interaction problems. In M. Papadrakakis, M. Fragiadakis, & V.

Plevris (Eds.), Proceedings of the 3rd ECCOMAS thematic conference on computational methods in

structural dynamics and earthquake engineering, May 2011, Corfu, Greece.

Pereira, A., & Beer, G. (2009). Interface dynamic stiffness matrix approach for three-dimensional

transient multi-region boundary element analysis. International Journal for Numerical Methods in

Engineering, 80, 1463–1495.

Schanz, M., & Antes, H. (2006). Application of ‘Operational Quadrature Methods’ in time domain

boundary element methods. Meccanica, 32, 179–186.

Wolf, J. (1995). Unit-impulse response matrix of unbounded medium by infinitesimal finite-element cell

method. Computer Methods in Applied Mechanics and Engineering, 122, 251–272.

Wolf, J. (1988). Soil–structure interaction analysis in the time domain. Englewood Cliffs, NJ: Prentice-

Hall.

European Journal of Computational Mechanics.

Downloads

Published

2012-06-06

How to Cite

Ferro, A. N. ., Clouteau, D. ., Greffet, N. ., & Devésa, G. . (2012). On a hybrid Laplace-time domain approach to dynamic interaction problems. European Journal of Computational Mechanics, 21(3-6), 290–299. https://doi.org/10.13052/17797179.2012.731254

Issue

Section

Original Article