Multi-scale modelling of the trabecular bone elastoplastic behaviour under compression loading

Authors

  • A. Jaziri National Engineering School of Tunis, BP 37, Le Belvedere 1002, Tunis, Tunisia
  • J. Rahmoun Laboratory LAMIH, University of Valenciennes, 59313 Valenciennes, France
  • H. Naceur Laboratory LAMIH, University of Valenciennes, 59313 Valenciennes, France
  • P. Drazetic Laboratory LAMIH, University of Valenciennes, 59313 Valenciennes, France
  • E. Markiewicz Laboratory LAMIH, University of Valenciennes, 59313 Valenciennes, France

DOI:

https://doi.org/10.13052/17797179.2012.731255

Keywords:

porous media, micromechanics, MCK criterion, trabecular bone, homogenisation

Abstract

We propose a new elastoplastic damage coupled model for the modelling of trabecular bone behaviour. The damage is carried out thanks to the limit analysis based on the MCK criterion. We first present the methodology allowing the estimation of elastic anisotropic properties of porous media by means of Mori–Tanaka homogenisation scheme. Then, we present the formulation of the integrated yield criterion derived by considering trial velocity field inspired from the Eshelby inhomogeneous inclusion solution. The obtained micromechanical model is implemented via a UMAT routine within the explicit dynamic code LS-DYNA. The proposed micromechanical model has been applied successfully for the modelling of some biomechanics applications to estimate the mechanical properties of the bovine trabecular bone.

Downloads

Download data is not yet available.

References

Carter, D.R., & Hayes, W.C. (1977). The compressive behaviour of bone as a two phase porous

structure. Journal of Bone & Joint Surgery, 59, 954–962.

Charlebois, M., Jirásek, M., Philippe, K., & Zysset, P.K. (2010). A nonlocal constitutive model for trabecular

bone softening in compression. Biomechanics and Modeling in Mechanobiology, 9, 597–611.

Cowin, S.C. (1985). The relationship between the elasticity tensor and the fabric tensor. Mechanics of

Materials, 4, 137–147.

Eshelby, J.D. (1957). The elastic field outside an ellipsoidal inclusion. Proceedings of the Royal Society

London, 252, 561–569.

Eshelby, J.D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related

problems. Proceedings of the Royal Society, Series A, 252, 561–569.

Fondrk, M.T., Bahniuk, E.H., & Davy, D.T. (1999a). A damage model for nonlinear tensile behavior of

cortical bone. Journal of Biomechanical Engineering, 121(5), 533–541.

Fondrk, M.T., Bahniuk, E.H., & Davy, D.T. (1999b). Inelastic strain accumulation in cortical bone during

rapid transient tensile loading. Journal of Biomechanical Engineering, 121(6), 616–621.

Fyhrie, D.P., & Schaffler, M.B. (1994). Failure mechanisms in human vertebral cancellous bone. Bone,

, 105–109.

Gibson. J. & Ashby, M. 1997. Cellular solids: Structure and properties, 2nd ed. Cambridge, UK:

Cambridge University Press.

Goulet, R.W., Goldstein, S.A., Ciarelli, M.J., Kuhn, J.L., Brown, M.B., & Feldkamp, L.A. (1994). The

relationship between the structural and orthogonal compressive properties of trabecular bone.

Journal of Biomechanics, 27(4), 375–389.

Grassl, P., & Jirásek, M. (2006). Plastic model with non-local damage applied to concrete. International

Journal for Numerical and Analytical Methods in Geomechanics, 30(1), 71–90.

Gupta, A., Bayraktar, H.H., Fox, J.C., Keaveny, T.M., & Papadopoulos, P. (2007). Constitutive

modeling and algorithmic implementation of a plasticity-like model for trabecular bone structures.

Computational Mechanics, 40, 261–272.

Gurson, A.L. (1977). Continuum theory of ductile rupture by void nucleation and growth: Part I. Yield

criterion and flow rules for porous ductile media. Journal of Engineering Materials and Technology,

, 2–15.

Halgrin, J. (2009). Effects of architectural parameters on the mechanical behavior of the trabecular

bone, (in French) (PhD thesis), University of Valenciennes.

Halgrin J., Rahmoun J., Chaari F., Markiewicz, E., & Drazetic P. (2009). Effets de l’architecture

cellulaire de l’os spongieux sur sa réponse mécanique, 19 ême Congrès Francéais de Mécanique,

Marseille, 24–28 août, France.

Hallquist, J.O. (2001). Ls-dyna Keyword User Manual, Livermore Software Technology Corporation.

Hannachi, M., Naceur, H., Batoz, J.L. (2007). Continuum based solid-shell element modeling for

the optimization of composite multilayered structures. International Review of Mechanical

Engineering. 1(4), 150–163.

Hansen, N.R., & Schreyer, H.L. (1994). A thermodynamically consistent framework for theories of elastoplasticity

coupled with damage. International Journal of Solids and Structures, 33(3), 359–389.

Harrigan, T.P., & Mann, R.W. (1984). Characterization of micro structural anisotropy in orthotropic

materials using a second rank tensor. Journal of Material Science, 19, 761–767.

Hayes, W.C., & Carter, D.R. (1976). Postyield behavior of subchondral trabecular bone. Journal of

Biomedical Materials Research, 10(4), 537–544.

Hill, R. (1965). The biochemists’ green mansions: The photosynthetic electron transport chain. 19

Essays in Biochemistry, 1, 121–151.

Hodgskinson, R., & Currey, J.D. (1990). The effect of variation in structure on the young’s modulus of

cancellous bone: A comparison of human and non-human material. Proceedings of the Institution of

Mechanical Engineers, 204, 115–121.

Kachanov, M., Shafiro, B., & Tsukrov, I. (2003). Handbook of elasticity solutions. Dordrecht: Kluwer

Academic.

Keaveny, T.M., Morgan, E.F., Niebur, G.L., & Yeh, O.C. (2001). Biomechanics of trabecular bone.

Annual Review of Biomedical Engineering, 3, 307–333.

Keaveny, T.M., Pinilla, T.P., Crawford, R.P., Kopperdahl, D.L., & Lou, A. (1997). Systematic and

random errors in compression trabecular bone. Journal of Orthopaedic Research, 15, 101–110.

Kefalas, V., & Eftaxiopoulos, D.A. (2012). Experimental study of cancellous bone under large strains

and a constitutive probabilistic model. Journal of the mechanical behavior of biomedical materials,

, 41–52.

Kosmopoulos, V., Schizas, C., & Keller, T.S. (2008). Modeling the onset and propagation of trabecular

bone microdamage during lowcycle fatigue. Journal of Biomechanics, 41, 515–522.

Laws, N., & McLaughlin, R. (1979). The effect of fibre length on the overall moduli of composite materials.

Journal of the Mechanics and Physics of Solids, 27, 1–13.

Lubarda, V.A., & Krajcinovic, D. (1995). Some fundamental issues in rate theory of damageelastoplasticity.

International Journal of Plasticity, 11(7), 763–797.

Maugin, G.A. (1992). The thermomechanics of plasticity and fracture. Cambridge: Cambridge

University Press.

Monchiet, V., Charkaluk, Kondo E., & Kondo, D. (2007). An improvement of Gursontype models of

porous materials by using Eshelby-like trial velocity fields. C.R. Mécanique, 335, 32–41.

Monchiet, V., Charkaluk, Kondo E., & Kondo, D. (2011). A micromechanics-based modification of the

Gurson criterion by using Eshelby-like velocity fields. European journal of mechanics A/Solids, 30,

–949.

Mori, T., & Tanaka, K. (1973). Averages stress in matrix and average elastic energy of materials with

misfitting inclusions. Acta Metallia, 21, 571–574.

Mura, T. (1987). Micromechanics of defects in solids (2nd ed.). Boston, MA: Martinus Nijhoff, The

Hague.

Needleman, A. (1972). A numerical study of necking in circular cylindrical bars. Journal of the

Mechanics and Physics of Solids, 20, 111–127.

Rahmoun, J., Chaari, F., Markiewicz, E., & Drazetic, P. (2009). Micromechanical modeling of the

anisotropy of elastic biological composites. Multiscale Modeling and Simulation, 8(1), 326–33.

Rice, J.C., Cowin, S.C., & Bowman, J.A. (1988). On the dependence of the elasticity and strength of

cancellous bone on apparent density. Journal of Biomechanics, 21(2), 155–168.

Rincón-Kohli, L. 2003. Identification of a multiaxial failure criterion for human trabecular bone,

(Doctoral dissertation, Ecole Polytechnique Fédérale de Lausanne).

Thurner, P.J., Wyss, P., Voide, R., Stauber, M., Stampanoni, M., Sennhauser, U., & Méller, R. (2006).

Time-lapsed investigation of three-dimensional failure and damage accumulation in trabecular bone

using synchrotron light. Bone, 39, 289–299.

Tvergaard, V. (1981). Influence of voids on shear band instabilities under plane strain conditions.

International Journal of Fracture, 17, 89–407.

Tvergaard, V., & Needleman, A. (1984). Analysis of cup-cone fracture in round tensile bar. Acta

Metallurgica, 32, 157–169.

Whitehouse, W.J. (1974). The quantitative morphology of anisotropic trabecular bone. Journal of

Microscopy, 101, 153–168.

Zysset, P.K., & Curnier, A. (1996). A 3D damage model for trabecular bone based on fabric tensors.

Journal of Biomechanics, 29, 1549–1558.

Downloads

Published

2012-06-06

How to Cite

Jaziri, A. ., Rahmoun, J. ., Naceur, H. ., Drazetic, P. ., & Markiewicz, E. . (2012). Multi-scale modelling of the trabecular bone elastoplastic behaviour under compression loading. European Journal of Computational Mechanics, 21(3-6), 254–269. https://doi.org/10.13052/17797179.2012.731255

Issue

Section

Original Article