A non-local formulation for level-set modelling

Authors

  • Stéphane Valance Nuclear Energy and Safety, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

DOI:

https://doi.org/10.13052/17797179.2012.740588

Keywords:

level-set, iso-geometry

Abstract

The level-set method, as introduced by Osher et al. (Osher, S., & Sethian, J., 1988. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. Journal of Computational Physics, 79, 12–49.) presents some flaws with respect to algorithmic simplicity and solution admissibility. In this paper, we present a robust approach for the level-set modelling by taking advantage of readily available work from phase-field framework. By adapting the latter with proper velocity correction, we have obtained a non-local formulation of the level-set problem that overrides the aforementioned problems. An application of this approach, both in explicit finite differences and implicit iso-geometric analysis, illustrates the efficiency of this new formulation.

Downloads

Download data is not yet available.

References

Bazilevs, Y., Calo, V.M., Zhang, Y., & Hughes, T.J.R. (2006). Isogeometric fluid–structure interaction

analysis with applications to arterial blood flow. Computational Mechanics, 38(4), 310–322.

Caginalp, G. (1986). An analysis of a phase field model of a free boundary. Archive for Rational

Mechanics and Analysis, 92(3), 205–245.

Cahn, J., & Allen, S. (1977). A microscopic theory for domain wall motion and its experimental verification

in Fe–AI alloy domain growth kinetics. Journal de Physique (Colloq. 7), 38, 51–55.

Cash, J. R., & Karp, A. H. (1990). A variable order Runge-Kutta method for initial value problems with

rapidly varying right-hand sides. ACM Transactions on Mathematical Software (TOMS), 16(3), 201–222.

Chessa, J., Smolinski, P., & Belytschko, T. (2002). The extended finite element method (XFEM) for

solidification problems. International Journal for Numerical Methods in Engineering, 53(8),

–1977.

Chung, J., & Hulbert, G. M. (1993). Time integration algorithm for structural dynamics with improved

numerical dissipation: The generalized-alpha method. Journal of Applied Mechanics, Transactions

ASME, 60(2), 371–375.

Coret, M., Valance, S., Laniel, R., & Réthoré, J. (2009). Étude mécanique d’un changement de phase

allotropique à l’échelle mésoscopique [Mechanical study of allotropic phase change at mesoscale].

Matériaux & Techniques, 97, 81–87.

Goldman, R. (2005). Curvature formulas for implicit curves and surfaces. Computer Aided Geometric

Design, 22(7), 632–658.

Gómez, H., Calo, V., Bazilevs, Y., & Hughes, T. (2008). Isogeometric analysis of the Cahn-Hilliard phasefield

model. Computer Methods in Applied Mechanics and Engineering, 197(49–50), 4333–4352.

Gravouil, A., Moës, N., & Belytschko, T. (2002). Non-planar 3D crack growth by the extended finite

element and level sets-Part II: Level set update. International Journal for Numerical Methods in

Engineering, 53(11), 2569–2586.

Gustafsson, K. (1991). Control-theoretic techniques for stepsize selection in explicit Runge-Kutta methods.

ACM Transactions on Mathematical Software (TOMS), 17(4), 533–554.

Gustafsson, K. (1994). Control-theoretic techniques for stepsize selection in implicit Runge-Kutta methods.

ACM Transactions on Mathematical Software (TOMS), 20(4), 496–517.

Harari, I., & Dolbow, J. (2010). Analysis of an efficient finite element method for embedded interface

problems. Computational Mechanics, 46(1), 205–211.

Jansen, K. E., Whiting, C. H., & Hulbert, G. M. (2000). A generalized-α method for integrating the

filtered Navier–Stokes equations with a stabilized finite element method. Computer Methods in

Applied Mechanics and Engineering, 190(3–4), 305–319.

Osher, S., & Sethian, J. (1988). Fronts propagating with curvature-dependent speed: Algorithms based

on Hamilton–Jacobi formulations. Journal of Computational Physics, 79, 12–49.

Sethian, J. (1999). Level set methods and fast marching methods (2nd ed.). Cambride: Cambridge

University Press.

Söderlind, G. (2006). Time-step selection algorithms: Adaptivity, control, and signal processing. Applied

Numerical Mathematics, 56(3), 488–502.

Valance, S., de Borst, R., Réthoré, J., & Coret, M. (2008). A partition-of-unity-based finite element method

for level sets. International Journal for Numerical Methods in Engineering, 76(10), 1513–1527.

Downloads

Published

2012-06-06

How to Cite

Valance, S. . (2012). A non-local formulation for level-set modelling. European Journal of Computational Mechanics, 21(3-6), 385–396. https://doi.org/10.13052/17797179.2012.740588

Issue

Section

Original Article