A non-local formulation for level-set modelling
DOI:
https://doi.org/10.13052/17797179.2012.740588Keywords:
level-set, iso-geometryAbstract
The level-set method, as introduced by Osher et al. (Osher, S., & Sethian, J., 1988. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. Journal of Computational Physics, 79, 12–49.) presents some flaws with respect to algorithmic simplicity and solution admissibility. In this paper, we present a robust approach for the level-set modelling by taking advantage of readily available work from phase-field framework. By adapting the latter with proper velocity correction, we have obtained a non-local formulation of the level-set problem that overrides the aforementioned problems. An application of this approach, both in explicit finite differences and implicit iso-geometric analysis, illustrates the efficiency of this new formulation.
Downloads
References
Bazilevs, Y., Calo, V.M., Zhang, Y., & Hughes, T.J.R. (2006). Isogeometric fluid–structure interaction
analysis with applications to arterial blood flow. Computational Mechanics, 38(4), 310–322.
Caginalp, G. (1986). An analysis of a phase field model of a free boundary. Archive for Rational
Mechanics and Analysis, 92(3), 205–245.
Cahn, J., & Allen, S. (1977). A microscopic theory for domain wall motion and its experimental verification
in Fe–AI alloy domain growth kinetics. Journal de Physique (Colloq. 7), 38, 51–55.
Cash, J. R., & Karp, A. H. (1990). A variable order Runge-Kutta method for initial value problems with
rapidly varying right-hand sides. ACM Transactions on Mathematical Software (TOMS), 16(3), 201–222.
Chessa, J., Smolinski, P., & Belytschko, T. (2002). The extended finite element method (XFEM) for
solidification problems. International Journal for Numerical Methods in Engineering, 53(8),
–1977.
Chung, J., & Hulbert, G. M. (1993). Time integration algorithm for structural dynamics with improved
numerical dissipation: The generalized-alpha method. Journal of Applied Mechanics, Transactions
ASME, 60(2), 371–375.
Coret, M., Valance, S., Laniel, R., & Réthoré, J. (2009). Étude mécanique d’un changement de phase
allotropique à l’échelle mésoscopique [Mechanical study of allotropic phase change at mesoscale].
Matériaux & Techniques, 97, 81–87.
Goldman, R. (2005). Curvature formulas for implicit curves and surfaces. Computer Aided Geometric
Design, 22(7), 632–658.
Gómez, H., Calo, V., Bazilevs, Y., & Hughes, T. (2008). Isogeometric analysis of the Cahn-Hilliard phasefield
model. Computer Methods in Applied Mechanics and Engineering, 197(49–50), 4333–4352.
Gravouil, A., Moës, N., & Belytschko, T. (2002). Non-planar 3D crack growth by the extended finite
element and level sets-Part II: Level set update. International Journal for Numerical Methods in
Engineering, 53(11), 2569–2586.
Gustafsson, K. (1991). Control-theoretic techniques for stepsize selection in explicit Runge-Kutta methods.
ACM Transactions on Mathematical Software (TOMS), 17(4), 533–554.
Gustafsson, K. (1994). Control-theoretic techniques for stepsize selection in implicit Runge-Kutta methods.
ACM Transactions on Mathematical Software (TOMS), 20(4), 496–517.
Harari, I., & Dolbow, J. (2010). Analysis of an efficient finite element method for embedded interface
problems. Computational Mechanics, 46(1), 205–211.
Jansen, K. E., Whiting, C. H., & Hulbert, G. M. (2000). A generalized-α method for integrating the
filtered Navier–Stokes equations with a stabilized finite element method. Computer Methods in
Applied Mechanics and Engineering, 190(3–4), 305–319.
Osher, S., & Sethian, J. (1988). Fronts propagating with curvature-dependent speed: Algorithms based
on Hamilton–Jacobi formulations. Journal of Computational Physics, 79, 12–49.
Sethian, J. (1999). Level set methods and fast marching methods (2nd ed.). Cambride: Cambridge
University Press.
Söderlind, G. (2006). Time-step selection algorithms: Adaptivity, control, and signal processing. Applied
Numerical Mathematics, 56(3), 488–502.
Valance, S., de Borst, R., Réthoré, J., & Coret, M. (2008). A partition-of-unity-based finite element method
for level sets. International Journal for Numerical Methods in Engineering, 76(10), 1513–1527.