Multiscale elastic-viscoplastic computational analysis
DOI:
https://doi.org/10.13052/EJCM.20.379-409Keywords:
LATIN, PGD, elastic-viscoplastic, DDMAbstract
The objective of this work is to develop an efficient strategy for quasi-static problems with elastic-viscoplastic constitutive laws. Our approach is based on the multiscale LATIN method for domain decomposition, and particularly on the use of the Proper Generalized Decomposition (PGD) method, which allows a drastic decrease in computation costs. We present the method in its general form applicable to problems with constitutive laws expressed using internal variables; then we discuss the technical features which are necessary in order to deal with elastic-viscoplastic models. We illustrate the method in detail through a onedimensional example using a Chaboche-type elastic-viscoplastic constitutive law.
Downloads
References
Ammar A., Mokdad B., Chinesta F., Keunings R., “ A new family of solvers for some classes
of multidimensional partial differential equations encountered in kinetic theory modeling
of complex fluids”, Journal of Non-Newtonian Fluid Mechanics, vol. 139, n° 3, p. 153-176,
Aubard X., Boucard P. A., Ladevèze P., Michel S., “ Modeling and simulation of damage in
elastomer structures at high strains”, Computers & Structures, vol. 80, n° 27-30, p. 2289-
, 2002.
Boisse P., Bussy P., Ladeveze P., “ A new approach in non-linear mechanics: The large time
increment method”, International journal for numerical methods in engineering, vol. 29,
n° 3, p. 647-663, 1990.
Boisse P., Ladeveze P., Poss M., Rougee P., “ A new large time increment algorithm for
anisotropic plasticity”, International journal of plasticity, vol. 7, n° 1-2, p. 65-77, 1991.
European Journal of Computational Mechanics. Volume 20 – No. 7-8/2011
Boucard P.-A., Champaney L., “ A suitable computational strategy for the parametric analysis
of problems with multiple contact”, International Journal for Numerical Methods in
Engineering, vol. 57, p. 1259-1282, 2003.
Boucard P. A., Ladevèze P., Poss M., Rougée P., “ A nonincremental approach for large displacement
problems”, Computers & Structures, vol. 64, n° 1-4, p. 499-508, 1997.
Chinesta F., Ammar A., Lemarchand F., Beauchene P., Boust F., “ Alleviating mesh constraints:
Model reduction, parallel time integration and high resolution homogenization”, Computer
Methods in Applied Mechanics and Engineering, vol. 197, n° 5, p. 400-413, 2008.
Cognard J.-Y., Ladevèze P., “ A large time increment approach for cyclic viscoplasticity”, International
Journal of Plasticity, vol. 9, n° 2, p. 141-157, 1993.
Cognard J. Y., Ladevèze P., Talbot P., “ A large time increment approach for thermo-mechanical
problems”, Advances in Engineering Software, vol. 30, n° 9-11, p. 583-593, 1999.
Devries F., Dumontet F., Duvaut G., Léné F., “ Homogenization and damage for composite
structures”, International Journal for Numerical Methods in Engineering, vol. 27, p. 285-
, 1989.
Farhat C., Chen P. S., Mandel J., “ A Scalable Lagrange Multiplier Based Domain Decomposition
Method For Time-Dependent Problems”, International Journal for Numerical Methods
in Engineering, vol. 38, n° 22, p. 3831-3853, 1995.
Farhat C., Lesoinne M., Pierson K., “ A scalable dual-primal domain decomposition method”,
Numerical Linear Algebra With Applications, vol. 7, n° 7-8, p. 687-714, 2000a.
Farhat C., Pierson K., Lesoine M., “ The second generation FETI Methods and their application
to the parallel solution of large-scale linear and geometracally non-linear structural analysis
problems”, Computer Methods in Applied Mechanics and Engineering, vol. 184, p. 333-
, 2000b.
Farhat C., Roux F.-X., “ A method of Finite Element Tearing and Interconnecting and its parallel
solution algorithm”, International Journal for Numerical Methods in Engineering, vol. 32,
p. 1205-1227, 1991.
Feyel F., “ A multilevel finite element (FE2) to describe the response of highly non-linear structures
using generalized continua”, Computer Methods in Applied Mechanics and Engineering,
vol. 192, p. 3233-3244, 2003.
Fish J., Shek K., Pandheeradi M., Shephard M. S., “ Computational plasticity for composite
structures based on mathematical homogenization: Theory and practice”, Computer Methods
in Applied Mechanics and Engineering, vol. 148, p. 53-73, 1997.
Gosselet P., Rey C., “ Non-overlapping domain decomposition methods in structural mechanics”,
Archives of Computational Methods in Engineering, vol. 13, p. 515-572, 2006.
Gosselet P., Rey C., Léné F., Dasset P., “ A domain decomposition method for quasiincompressible
formulation with discontinuous pressure fields”, Revue Européenne des Eléments
Finis, vol. 11, p. 363-378, 2002.
Ladevèze P., “ New algorithms: mechanical framework and development (in french)”, Compte
rendu de l’académie des Sciences, vol. 300(2), p. 41-44, 1985.
Ladevèze P., “ New advances in the large time increment method”, New advances in computational
structural mechanics, P. Ladevèze and O.C. Zienkiewicz, 1992.
Ladevèze P., Nonlinear Computationnal Structural Mechanics - New Approaches and Non-
Incremental Methods of Calculation, Springer Verlag, 1999.
Multiscale elastic-viscoplastic analysis 409
Ladeveze P., Cognard J., Talbot P., A Non-incremental and Adaptive Computational Approach
in Thermo-viscoplasticity, p. 281-291, 2002a.
Ladevèze P., Loiseau O., Dureisseix D., “ A micro-macro and parallel computational strategy
for highly heterogeneous structures”, International Journal for Numerical Methods in Engineering,
vol. 52, p. 121-138, 2001.
Ladevèze P., Néron D., Gosselet P., “ On a mixed and multiscale domain decomposition
method”, Computer Methods in Applied Mechanics and Engineering, vol. 196, n° 8,
p. 1526-1540, 2007.
Ladevèze P., Nouy A., Loiseau O., “ A multiscale computational approach for contact problems”,
Computer Methods in Applied Mechanics and Engineering, vol. 191, p. 4869-4891,
b.
Ladevèze P., Passieux J.-C., Néron D., “ The LATIN multiscale computational method and the
Proper Generalized Decomposition”, Computer Methods in Applied Mechanics and Engineering,
vol. 199, p. 1287-1296, 2010.
Le Tallec P., De Roeck Y.-H., Vidrascu M., “ Domain-decomposition methods for large linearly
elliptic three dimensional problems”, Journal of Computational and Applied Mathematics,
vol. 34, p. 93-117, 1991.
Lemaitre J., Chaboche J., Mechanics of solid materials, Cambridge Univ Pr, 1994.
Magoulès F., Roux F.-X., “ Lagrangian formulation of domain decomposition methods: A unified
theory”, Applied Mathematical Modeling, vol. 30, p. 593-615, 2006.
Mandel J., “ Balancing domain decomposition”, Communications in Numerical Methods in
Engineering, vol. 9, n° 233-241, p. 233-241, 1993.
Néron D., Dureisseix D., “ A computational strategy for thermo-poroelastic structures with a
time-space interface coupling”, International Journal for Numerical Methods in Engineering,
vol. 75, n° 9, p. 1053-1084, 2008.
Néron D., Ladevèze P., “ Proper Generalized Decomposition for multiscale and multiphysics
problems”, Archives of Computational Methods in Engineering, vol. 17, p. 351-372, 2010.
Nouy A., “ A generalized spectral decomposition technique to solve a class of linear stochastic
partial differential equations”, Computer Methods in Applied Mechanics and Engineering,
vol. 196, p. 4521-4537, 2007.
Nouy A., Ladevèze P., “ On a multiscale computational strategy with time and space homogenization
for structural mechanics”, Computer Methods in Applied Mechanics and Engineering,
vol. 192, p. 3061-3087, 2004.
Oden J. T., Vemaganti K., Moës N., “ Hierarchical modeling of heterogeneous solids”, Computer
Methods in Applied Mechanics and Engineering, vol. 172, p. 3-25, 1999.
Passieux J.-C., Ladevèze P., Néron D., “ A scalable time-space multiscale method: adaptive
time scales separation”, Computational Mechanics, vol. 199, p. 1287-1296, 2010.
Risler F., Rey C., “ Iterative accelerating algorithms with Krylov subspaces for the solution to
large-scale nonlinear problems”, Numerical Algorithms, vol. 23, p. 1-30, 2000.
Sanchez-Palencia E., “ Comportement local et macroscopique d’un type de milieux physiques
hétérogènes”, International Journal of Engineering Science, vol. 12, n° 4, p. 331-351, 1974.
Wriggers P., Nonlinear Finite Element Methods, Springer Verlag, 2008.
Zohdi T., Oden J., Rodin G., “ Hierarchical modeling of heterogeneous bodies”, Computer
Methods in Applied Mechanics and Engineering, vol. 138, n° 1-4, p. 273-298, 1996.