Multiscale elastic-viscoplastic computational analysis

Authors

  • Nicolas Relun LMT-Cachan (ENS Cachan/CNRS/UPMC/PRES UniverSud Paris)
  • David Néron LMT-Cachan (ENS Cachan/CNRS/UPMC/PRES UniverSud Paris)
  • Pierre- Alain Boucard LMT-Cachan (ENS Cachan/CNRS/UPMC/PRES UniverSud Paris)

DOI:

https://doi.org/10.13052/EJCM.20.379-409

Keywords:

LATIN, PGD, elastic-viscoplastic, DDM

Abstract

The objective of this work is to develop an efficient strategy for quasi-static problems with elastic-viscoplastic constitutive laws. Our approach is based on the multiscale LATIN method for domain decomposition, and particularly on the use of the Proper Generalized Decomposition (PGD) method, which allows a drastic decrease in computation costs. We present the method in its general form applicable to problems with constitutive laws expressed using internal variables; then we discuss the technical features which are necessary in order to deal with elastic-viscoplastic models. We illustrate the method in detail through a onedimensional example using a Chaboche-type elastic-viscoplastic constitutive law.

Downloads

Download data is not yet available.

References

Ammar A., Mokdad B., Chinesta F., Keunings R., “ A new family of solvers for some classes

of multidimensional partial differential equations encountered in kinetic theory modeling

of complex fluids”, Journal of Non-Newtonian Fluid Mechanics, vol. 139, n° 3, p. 153-176,

Aubard X., Boucard P. A., Ladevèze P., Michel S., “ Modeling and simulation of damage in

elastomer structures at high strains”, Computers & Structures, vol. 80, n° 27-30, p. 2289-

, 2002.

Boisse P., Bussy P., Ladeveze P., “ A new approach in non-linear mechanics: The large time

increment method”, International journal for numerical methods in engineering, vol. 29,

n° 3, p. 647-663, 1990.

Boisse P., Ladeveze P., Poss M., Rougee P., “ A new large time increment algorithm for

anisotropic plasticity”, International journal of plasticity, vol. 7, n° 1-2, p. 65-77, 1991.

European Journal of Computational Mechanics. Volume 20 – No. 7-8/2011

Boucard P.-A., Champaney L., “ A suitable computational strategy for the parametric analysis

of problems with multiple contact”, International Journal for Numerical Methods in

Engineering, vol. 57, p. 1259-1282, 2003.

Boucard P. A., Ladevèze P., Poss M., Rougée P., “ A nonincremental approach for large displacement

problems”, Computers & Structures, vol. 64, n° 1-4, p. 499-508, 1997.

Chinesta F., Ammar A., Lemarchand F., Beauchene P., Boust F., “ Alleviating mesh constraints:

Model reduction, parallel time integration and high resolution homogenization”, Computer

Methods in Applied Mechanics and Engineering, vol. 197, n° 5, p. 400-413, 2008.

Cognard J.-Y., Ladevèze P., “ A large time increment approach for cyclic viscoplasticity”, International

Journal of Plasticity, vol. 9, n° 2, p. 141-157, 1993.

Cognard J. Y., Ladevèze P., Talbot P., “ A large time increment approach for thermo-mechanical

problems”, Advances in Engineering Software, vol. 30, n° 9-11, p. 583-593, 1999.

Devries F., Dumontet F., Duvaut G., Léné F., “ Homogenization and damage for composite

structures”, International Journal for Numerical Methods in Engineering, vol. 27, p. 285-

, 1989.

Farhat C., Chen P. S., Mandel J., “ A Scalable Lagrange Multiplier Based Domain Decomposition

Method For Time-Dependent Problems”, International Journal for Numerical Methods

in Engineering, vol. 38, n° 22, p. 3831-3853, 1995.

Farhat C., Lesoinne M., Pierson K., “ A scalable dual-primal domain decomposition method”,

Numerical Linear Algebra With Applications, vol. 7, n° 7-8, p. 687-714, 2000a.

Farhat C., Pierson K., Lesoine M., “ The second generation FETI Methods and their application

to the parallel solution of large-scale linear and geometracally non-linear structural analysis

problems”, Computer Methods in Applied Mechanics and Engineering, vol. 184, p. 333-

, 2000b.

Farhat C., Roux F.-X., “ A method of Finite Element Tearing and Interconnecting and its parallel

solution algorithm”, International Journal for Numerical Methods in Engineering, vol. 32,

p. 1205-1227, 1991.

Feyel F., “ A multilevel finite element (FE2) to describe the response of highly non-linear structures

using generalized continua”, Computer Methods in Applied Mechanics and Engineering,

vol. 192, p. 3233-3244, 2003.

Fish J., Shek K., Pandheeradi M., Shephard M. S., “ Computational plasticity for composite

structures based on mathematical homogenization: Theory and practice”, Computer Methods

in Applied Mechanics and Engineering, vol. 148, p. 53-73, 1997.

Gosselet P., Rey C., “ Non-overlapping domain decomposition methods in structural mechanics”,

Archives of Computational Methods in Engineering, vol. 13, p. 515-572, 2006.

Gosselet P., Rey C., Léné F., Dasset P., “ A domain decomposition method for quasiincompressible

formulation with discontinuous pressure fields”, Revue Européenne des Eléments

Finis, vol. 11, p. 363-378, 2002.

Ladevèze P., “ New algorithms: mechanical framework and development (in french)”, Compte

rendu de l’académie des Sciences, vol. 300(2), p. 41-44, 1985.

Ladevèze P., “ New advances in the large time increment method”, New advances in computational

structural mechanics, P. Ladevèze and O.C. Zienkiewicz, 1992.

Ladevèze P., Nonlinear Computationnal Structural Mechanics - New Approaches and Non-

Incremental Methods of Calculation, Springer Verlag, 1999.

Multiscale elastic-viscoplastic analysis 409

Ladeveze P., Cognard J., Talbot P., A Non-incremental and Adaptive Computational Approach

in Thermo-viscoplasticity, p. 281-291, 2002a.

Ladevèze P., Loiseau O., Dureisseix D., “ A micro-macro and parallel computational strategy

for highly heterogeneous structures”, International Journal for Numerical Methods in Engineering,

vol. 52, p. 121-138, 2001.

Ladevèze P., Néron D., Gosselet P., “ On a mixed and multiscale domain decomposition

method”, Computer Methods in Applied Mechanics and Engineering, vol. 196, n° 8,

p. 1526-1540, 2007.

Ladevèze P., Nouy A., Loiseau O., “ A multiscale computational approach for contact problems”,

Computer Methods in Applied Mechanics and Engineering, vol. 191, p. 4869-4891,

b.

Ladevèze P., Passieux J.-C., Néron D., “ The LATIN multiscale computational method and the

Proper Generalized Decomposition”, Computer Methods in Applied Mechanics and Engineering,

vol. 199, p. 1287-1296, 2010.

Le Tallec P., De Roeck Y.-H., Vidrascu M., “ Domain-decomposition methods for large linearly

elliptic three dimensional problems”, Journal of Computational and Applied Mathematics,

vol. 34, p. 93-117, 1991.

Lemaitre J., Chaboche J., Mechanics of solid materials, Cambridge Univ Pr, 1994.

Magoulès F., Roux F.-X., “ Lagrangian formulation of domain decomposition methods: A unified

theory”, Applied Mathematical Modeling, vol. 30, p. 593-615, 2006.

Mandel J., “ Balancing domain decomposition”, Communications in Numerical Methods in

Engineering, vol. 9, n° 233-241, p. 233-241, 1993.

Néron D., Dureisseix D., “ A computational strategy for thermo-poroelastic structures with a

time-space interface coupling”, International Journal for Numerical Methods in Engineering,

vol. 75, n° 9, p. 1053-1084, 2008.

Néron D., Ladevèze P., “ Proper Generalized Decomposition for multiscale and multiphysics

problems”, Archives of Computational Methods in Engineering, vol. 17, p. 351-372, 2010.

Nouy A., “ A generalized spectral decomposition technique to solve a class of linear stochastic

partial differential equations”, Computer Methods in Applied Mechanics and Engineering,

vol. 196, p. 4521-4537, 2007.

Nouy A., Ladevèze P., “ On a multiscale computational strategy with time and space homogenization

for structural mechanics”, Computer Methods in Applied Mechanics and Engineering,

vol. 192, p. 3061-3087, 2004.

Oden J. T., Vemaganti K., Moës N., “ Hierarchical modeling of heterogeneous solids”, Computer

Methods in Applied Mechanics and Engineering, vol. 172, p. 3-25, 1999.

Passieux J.-C., Ladevèze P., Néron D., “ A scalable time-space multiscale method: adaptive

time scales separation”, Computational Mechanics, vol. 199, p. 1287-1296, 2010.

Risler F., Rey C., “ Iterative accelerating algorithms with Krylov subspaces for the solution to

large-scale nonlinear problems”, Numerical Algorithms, vol. 23, p. 1-30, 2000.

Sanchez-Palencia E., “ Comportement local et macroscopique d’un type de milieux physiques

hétérogènes”, International Journal of Engineering Science, vol. 12, n° 4, p. 331-351, 1974.

Wriggers P., Nonlinear Finite Element Methods, Springer Verlag, 2008.

Zohdi T., Oden J., Rodin G., “ Hierarchical modeling of heterogeneous bodies”, Computer

Methods in Applied Mechanics and Engineering, vol. 138, n° 1-4, p. 273-298, 1996.

Downloads

Published

2011-08-07

How to Cite

Relun, N. ., Néron, D. ., & Alain Boucard, P.-. (2011). Multiscale elastic-viscoplastic computational analysis. European Journal of Computational Mechanics, 20(7-8), 379 to 409. https://doi.org/10.13052/EJCM.20.379-409

Issue

Section

Original Article