Sheet metal forming simulation using finite elastoplasticity with mixed isotropic/kinematic hardening
DOI:
https://doi.org/10.13052/EJCM.20.427-453Keywords:
elastoplasticity, finite strain, FEM, kinematic hardening, springbackAbstract
A numerical formulation is presented for anisotropic elastoplasticity behavior in finite strain with non-linear isotropic/kinematic hardening model. Non-linear kinematic hardening is modeled by the Lemaitre-Chaboche law with the aim of considering cyclic deformation phenomena. User-defined material subroutines are developed based on Hill’s quadratic yield function for both ABAQUS-Explicit (VUMAT) and ABAQUS-Standard (UMAT). For validation purpose, the tension-compression and cyclic shear tests are simulated. Several sheet forming processes including contact, anisotropic plasticity, elastic modulus variation with plastic strain and springback effects are simulated. Numerical results are compared with experimental data.
Downloads
References
Badreddine H., Saanouni K., Dogui A., “On non-associative anisotropic finite plasticity fully
coupled with isotropic ductile damage for metal forming”, International Journal of
Plasticity, 26, 2010, p. 1541-1575.
Chatti S., Hermi N., “The effect of non-linear recovery on springback prediction”, Computers
and Structures, 89, 2011, p. 1367-1377.
Chatti S., “Effect of the elasticity formulation in finite strain on springback prediction”,
Computers and Structures, 88, 2010, p. 796-805.
Chatti S., Dogui A., Dubujet P., Sidoroff F., “An objective incremental formulation for the
solution of anisotropic elastoplastic problems at finite strain”, Communication in Num.
Methods in Engeneering, 17, 2010, p. 845-862.
Chung K., Shah K., “Finite element simulation of sheet metal forming for planar anisotropic
metals”, International Journal of Plasticity, 8, 1992, p. 453-476.
Cleveland R.M., Ghosh A. K., “Inelastic effects on springback in metals”, International
Journal of Plasticity, 18, 2002, p. 769-785.
De Sousa R.J. A., Yoon J.W., Cardoso R. P. R., Valente R. A. F., Gràcio J.J., “On the use of a
reduced enhanced solid-shell (RESS) element for sheet forming simulations”,
International Journal of Plasticity, 23, 2007, p. 490-515.
Dogui A., « Cinématique bidimensionnelle en grandes déformations – Application à la
traction hors axes et à la torsion », Journal de Mécanique Théorique et Appliquée, 7,
, p. 43-64.
Ferreira J.A., Sun P., Grácio J.J., “Close loop control of a hydraulic press for springback
analysis”, Journal of Materials Processing Technology, 177, 2006, p. 377-381.
Ghaei A., Green D.E., Taherizadeh A., Semi-implicit numerical integration of Yoshida–
Uemori two-surface plasticity model, International Journal of Mechanical Sciences, 52,
, p. 531-540.
Huges T.J.R., Winget T. J., “Finite rotation effects in numerical integration of rate
constitutive equations arising in large-deformation analysis”, Int. J. for Numer. Meth. in
Eng., 15, 1980, p. 1862-1867.
Ingarao G., Di Lorenzo R., “A new progressive design methodology for complex sheet metal
stamping operations: Coupling spatially differentiated restraining forces approach and
multi-objective optimization”, Computers and Structures, 88, 2010, p. 625-638.
Laurent H., Grèze R., Oliveira M. C., Menezes L. F., Manach P.Y., Alves J. L., “Numerical
study of springback using the split-ring test for anBadreddine H., Saanouni K., Dogui A., “On non-associative anisotropic finite plasticity fully
coupled with isotropic ductile damage for metal forming”, International Journal of
Plasticity, 26, 2010, p. 1541-1575.
Chatti S., Hermi N., “The effect of non-linear recovery on springback prediction”, Computers
and Structures, 89, 2011, p. 1367-1377.
Chatti S., “Effect of the elasticity formulation in finite strain on springback prediction”,
Computers and Structures, 88, 2010, p. 796-805.
Chatti S., Dogui A., Dubujet P., Sidoroff F., “An objective incremental formulation for the
solution of anisotropic elastoplastic problems at finite strain”, Communication in Num.
Methods in Engeneering, 17, 2010, p. 845-862.
Chung K., Shah K., “Finite element simulation of sheet metal forming for planar anisotropic
metals”, International Journal of Plasticity, 8, 1992, p. 453-476.
Cleveland R.M., Ghosh A. K., “Inelastic effects on springback in metals”, International
Journal of Plasticity, 18, 2002, p. 769-785.
De Sousa R.J. A., Yoon J.W., Cardoso R. P. R., Valente R. A. F., Gràcio J.J., “On the use of a
reduced enhanced solid-shell (RESS) element for sheet forming simulations”,
International Journal of Plasticity, 23, 2007, p. 490-515.
Dogui A., « Cinématique bidimensionnelle en grandes déformations – Application à la
traction hors axes et à la torsion », Journal de Mécanique Théorique et Appliquée, 7,
, p. 43-64.
Ferreira J.A., Sun P., Grácio J.J., “Close loop control of a hydraulic press for springback
analysis”, Journal of Materials Processing Technology, 177, 2006, p. 377-381.
Ghaei A., Green D.E., Taherizadeh A., Semi-implicit numerical integration of Yoshida–
Uemori two-surface plasticity model, International Journal of Mechanical Sciences, 52,
, p. 531-540.
Huges T.J.R., Winget T. J., “Finite rotation effects in numerical integration of rate
constitutive equations arising in large-deformation analysis”, Int. J. for Numer. Meth. in
Eng., 15, 1980, p. 1862-1867.
Ingarao G., Di Lorenzo R., “A new progressive design methodology for complex sheet metal
stamping operations: Coupling spatially differentiated restraining forces approach and
multi-objective optimization”, Computers and Structures, 88, 2010, p. 625-638.
Laurent H., Grèze R., Oliveira M. C., Menezes L. F., Manach P.Y., Alves J. L., “Numerical
study of springback using the split-ring test for anAA5754 aluminum alloy”, Finite
Elements in Analysis and Design, 46, 2010, p. 751-759.
Lemaître J., Chaboche J.L., Mécanique des matériaux solides, Dunod Eds, Paris, 1985.
Mandel J., « Equations constitutives et directeurs dans les milieux plastiques et
viscoplastiques », International Journal of solids and structures, 9, 1971, p. 725-740.