Taylor-SPH vs Taylor-Galerkin for shock waves in viscoplastic continua
DOI:
https://doi.org/10.13052/EJCM.20.281-308Keywords:
Taylor-SPH, Taylor-Galerkin, shock wave, viscoplastic, FEMAbstract
A new time discretization scheme with a corrected SPH is presented. The time discretization has been carried out by means of a Taylor series expansion in two steps. In order to avoid numerical instabilities, two different sets of particles have been considered in the time discretization, and a Lagrangian kernel has been used for the spatial approximation. The Lagrangian kernel and its gradient have been corrected to satisfy the consistency conditions. This new method is applied to solve the propagation of shock waves in elastoviscoplastic media and the results are compared with those obtained with a similar time discretization scheme within the frame of FEM. The proposed method is shown to be stable and robust. Numerical dispersion and diffusion are minimized and only a reduced number of particles is required to obtain reasonably accurate results.
Downloads
References
Belytschko T., Guo Y., Liu W. K. and Xiao S. P., “A unified stability analysis of meshless
particle methods”, Int. J. Numer. Meth. Engrg., 48, 2000, p. 1359-1400.
Belytschko T., Krongauz Y., Dolbow Y., Gerlach C., “On the completeness of meshfree
particle methods”, Int. J. Numer. Methods Eng., 1998, 43, p. 785-819.
Belytschko T., Krongauz Y., Organ D., Fleming M., Krysl P., “Meshless methods: An overview
and recent developments”, Comput. Methods. Appl. Mech. Engrg., 1996, 139, p. 3-47.
Bonet J., Kulasegaram S., “Correction and stabilization of smooth particle hydrodynamics
methods with applications in metal forming simulations”, Int. J. Numer. Meth. Engng.
, 47, p. 1189-1214.
Caleyron F., Chuzel-Marmot Y., Combescure A., “Modeling of reinforced concrete through
SPH-FE coupling and its application to the simulation of a projectile’s impact onto a
slab”, International Journal for Numerical Methods in Biomedical Engineering, 2009,
DOI: 10.1002/cnm.1341
Chuzel-Marmot Y., Combescure A., Ortiz R., “Explicit dynamics ‘SPH-Finite Element’
coupling using the Arlequin method. Simulation of projectile’s impacts on concrete
slabs”, Revue Européenne de Mécanique Numérique, 2008, p. 737-748.
Dyka C. T., Ingel R. P., “An approach for tension instability in Smoothed Particle
Hydrodynamics”, Computers and Structures, 1995, 57, p. 573-580.
Dyka C. T., Randles P. W. and Ingel R. P., “Stress points for tension instability in SPH”, Int.
J. Numer. Meth. Engrg., 1997, 40, p. 2325-2341.
Gingold R.A., Monaghan J.J., “Smoothed particles hydrodynamics: Theory and application to
non-spherical stars”, Monthly Notices of the Royal Astronomical Society, 1977, 181,
p. 375-389.
Hughes T.J.R., The Finite Element Method: Linear Static and Dynamic Finite Element
Analysis, Prentice-Hall, Inc., Engewood Cliffs, New Jersey, 1987.
Johnson G.R., Beissel S.R., “Normalized smoothing functions for SPH impact computations”,
Int. J. Numer. Methods Engrg., 1996, 39, p. 2725-2741.
Krenk S., “Energy conservation in Newmark based time integration algorithms”, Computer
Methods in Applied Mechanics and Engineering, 2006, 195, 44-47: 6110-6124.
Krenk S. and Høgsberg J., “Properties of time integration with first order filter damping”, Int.
J. Numer. Meth. Engng, 2005, 64 :547-566.
Krongauz Y., Belytschko T., “Consistent pseudo derivatives in meshless methods”, Comput.
Meth. Appl. Mech. Engng, 1997, 146: p. 371-386.
Laursen T.A., Computational contact and impact Mechanics: fundamentals of modeling
interfacial phenomena in nonlinear finite element analysis, Springer, Berlin, 2002.
Li X., Yao D., Lewis RW., “A discontinuous Galerkin Finite Element Method for dynamic
and wave propagation problems in non-linear solids and saturated porous media”,
International Journal for Numerical Methods in Engineering 2003, 57, p. 1775-1800.
Libersky L.D., Petschek A.G., “Smooth particle hydrodynamics with strength of materials,
Advances in the Free Lagrange Method”, Lecture Notes in Physics, 1991, 395, p. 248-257.
Liu W. K., Jun S., Zhang Y. F., “Reproducing kernel particle methods”, Int. J. Numer. Meth.
Engng., 1995, 20, 8-9, p. 1081-1106.
Lucy L.B., “A numerical approach to the testing of fusion process”, Astronomical Journal,
, 82 p. 1013-1024.
Mabssout M., Pastor M., “A Taylor-Galerkin algorithm for shock wave propagation and strain
localization failure of viscoplastic continua”, Comput. Methods. Appl. Mech. Engrg,
a, 192, p. 955-971.
Mabssout M., Pastor M., “A two step Taylor-Galerkin algorithm for shock wave propagation
in soils”, Int. J. Numer. Analytical Meth. Geomechanics, 2003b, 27, p. 685-704.
Mabssout M., Pastor M., Herreros M.I., Quecedo M., “A Runge-Kutta, Taylor-Galerkin
scheme for hyperbolic systems with source terms. Application to shock wave propagation
in viscoplastic geomaterials”, Int. J. Numer. Analytical Meth. Geomechanics, 2006,
vol. 30, n° 13, p. 1337-1355.
Maurel B., Combescure A., “An SPH shell formulation for plasticity and fracture analysis in
explicit dynamics”, International Journal For Numerical Methods In Engineering, 2008,
p. 949-971.
Monaghan J.J., “An introduction to SPH”, Comput. Phys., Commun., 48, 1988, p. 89-96.
Monaghan J.J., Lattanzio J.C., “A refined particle method for astrophysical problems”,
Astronomy and Astrophysics, 1985, 149, p. 135-143.
Newmark N.M., “A method of computation for Structural Dynamics”, Journal of Engineering
Mechanics Division, ASCE, 1959, vol. 85, p. 67-94.
Perzyna P., “Fundamental problems in viscoplasticity, Recent Advances in Applied
Mechanics”, Academic press, New York, 1966, 9, p. 243-377.
Potapov S., Maurel B., Combescure A., Fabis J., “Modeling accidental-type fluid-structure
interaction problems with the SPH method”, Computers and Structures, vol. 87, 2009,
p. 721-734.
Rabczuk T., Belytschko T., Xiao S. P., “Stable particle methods based on Lagrangian
kernels”, Comput. Methods. Appl. Mech. Engrg, 2004, 193, p. 1035-1063.
Randles P. W., Libersky L. D., “Recent improvements in SPH modelling of hypervelocity
impact”, Int. J. Impact Engrg., 1997, 20, p. 525-532.
Randles P.W., Libersky L.D., “Normalized SPH with stress points”, Int. J. Numer. Meth.
Engng., 2000, 48, p. 1445-1462.
Réthoré J., Gravouil A., and Combescure A., “A combined space–time extended finite
element method”, Int. J. Numer. Meth. Engng., 2005, 64, p. 260-284.
Simo J.C., Tarnow N, Wong KK., “Exact energy-momentum conserving algorithms and
symplectic schemes for nonlinear dynamics”, Computer Methods in Applied Mechanics
and Engineering, 1992, vol. 100, n° 1, p. 63-116.
Swegle J.W., Hicks D.A., Attaway S.W., “Smooth particle hydrodynamics stability analysis”,
J. Comput. Phys., 116, 1995, p. 123-134.
Xiao S.P., Belytschko T., “Material stability analysis of particle methods”, Adv. Comput.
Math., 23, 2005, p. 171-190.
Zienkiewicz O.C., Taylor R.L., The Finite Element Method (5th Edition) vol 1, The Basis,
Butterword-Heinemann, Oxford, 2000.